



### Multi-Objective Bayesian Target Interval Optimization for Semiconductor Process Parameters

Paper ID: 25

Xiao Yang, Xingyu Qin, Yujie Zhang, Jianwang Zhai<sup>+</sup>, Kang Zhao Beijing University of Posts and Telecommunications







- **1. Introduction**
- 2. Preliminaries
- 3. Proposed Method
- 4. Experiments
- **5.** Conclusion





#### **1. Introduction**

- 2. Preliminaries
- **3. Proposed Method**
- 4. Experiments
- **5.** Conclusion







## Semiconductor Process Parameters Optimization — A High-Impact Yet Costly Task

- Why It Matters
  - Process parameters directly shape film quality, device performance, and yield
  - Small tuning errors  $\rightarrow$  severe defects or variability
- What Makes It Difficult
  - Objective functions are black-box and multi-dimensional
  - Real experiments are slow, expensive, and non-repeatable
  - Classical tuning methods are inefficient and not generalizable



## Why PVD Tuning Is Particularly Challenging

- A Critical Step in Modern Fabrication
  - PVD is key to forming conductive and barrier layers in interconnect stacks
  - Its output quality directly impacts performance
- Nonlinear and Coupled Parameter Effects
  - Outputs (e.g., thickness, uniformity) are sensitive to power, pressure, flow, etc.
  - Tuning often involves trade-offs across multiple conflicting goals



A PVD equipment used in advanced semiconductor fabrication





## **What Makes This Optimization Problem Unique**

- Not Traditional Scalar Optimization
  - Aim to satisfy multiple intervals
  - Each output has a target range
- More than Multi-Objective Trade-offs
  - Our goal is not Pareto optimality, but to meet all constraints simultaneously
- A Constraint-Driven, Success-Oriented Task
  - We care about success rate
  - This setting arises naturally in industrial applications like PVD

## EDA

## **Problem Formulation**

• Choose input  $\mathbf{x} \in \mathcal{X}$  so that all m outputs satisfy their target intervals:

$$\mathbf{x}^* = \arg\min_{\mathbf{x}\in\mathcal{X}} \mathbb{E}\left[\sum_{i=1}^m \mathbb{I}(y_i \notin [l_i, u_i])\right]$$

- The indicator  $\mathbb{I}(\cdot)$  penalizes violations
- Problem = "Hit all intervals with minimal trials"
- This is a constraint-focused optimization problem, solved using probabilistic modeling







#### **1. Introduction**

- **2.** Preliminaries
- **3. Proposed Method**
- 4. Experiments
- **5.** Conclusion

## EDA

Ę



## **PVD Process**

- What is PVD?
  - A vacuum-based process for thin-film deposition in back-end semiconductor fabrication
- How it works: Core Process Flow
  - Input: tunable parameters
  - Core: physical deposition via sputtering or evaporation
  - Output: performance metrics



PVD Workflow and Key Process Parameters

## **Bayesian Optimization Basics**

- Surrogate-Based Optimization ٠
  - Use Gaussian Process (GP) to approximate expensive function
  - Acquisition function balances exploration and exploitation
- Standard BO Loop •

Ē

EDA

– Sample  $\rightarrow$  Fit surrogate  $\rightarrow$  Maximize acquisition  $\rightarrow$  Evaluate  $\rightarrow$  Update







## Edz



## **Inside the Surrogate: GP & SMTGP**

#### Gaussian Processes

- Predict mean + uncertainty for any unseen input
- Enables uncertainty-aware decisions
- SMTGP: Sparse Multi-Task Gaussian Process
  - Captures cross-objective correlations
  - Uses a small set of inducing points  $P \ll N$  to reduce complexity from  $O(N^3 M^3) \rightarrow O(P^3 M^3)$

P: number of inducing points N: number of data points M: number of output tasks





- **1. Introduction**
- 2. Preliminaries
- **3. Proposed Method**
- 4. Experiments
- **5.** Conclusion



Ę

### **Framework Overview**



#### Two Core Modules

- **Optimizer:** BO integrating SMTGP & PRISM
- Predictor: Lightweight neural model for system behavior approximation

#### Closed Optimization Loop

- Suggest  $\rightarrow$  Predict  $\rightarrow$  Evaluate  $\rightarrow$  Refine  $\rightarrow$  Repeat

## **Key Innovations**

- MIMO Predictor with Soft Physical Constraints
  - Learns from data while encouraging known physical trends
- Bayesian Optimization Framework with Interval Constraints
  - A. SMTGP Surrogate Model
  - Multi-output GP with sparse inducing points
  - Captures cross-objective dependencies efficiently
  - B. Acquisition Function: PRISM
  - Interval-probability-guided search
  - Selects points with highest joint interval satisfaction probability

## **MIMO Predictor**

#### • Model Architecture

- Shallow MLP with ReLU activation
- Low cost, captures nonlinear patterns

#### Constraint Regularization

- Gradient-based penalty term that checks physical consistency (e.g.,  $\partial y/\partial x \ge 0$ ) during training
- Prior Integration
  - Soft constraints help improve accuracy with limited data





Ę



## **MIMO Predictor - Training Flow**

- Training Workflow
  - Train MLP on initial data
  - Evaluate loss after each epoch
- Early Stopping Mechanism
  - If no improvement, increase patience counter
  - Stop training when patience exceeds limit







## **Intelligent Target Interval Optimization Algorithm**



Enhanced BO Framework for Target Interval PVD Parameter Tuning Motivation

- Handle multi-objective constraints under scarce data
- Enable interval-based optimization

#### Framework Highlights

- Tailored BO system for constrained industrial optimization
- Combines model accuracy and constraint-aware decision making



## **SMTGP Surrogate**

- Multi-Task Modeling
  - Shared kernel across objectives  $\rightarrow$  Captures correlations
- Sparse Approximation
  - 20 inducing points  $\rightarrow$  Retain accuracy while reducing cost
- Prediction Equations

$$\boldsymbol{\mu}(\mathbf{x}^*) = \mathbf{K}_{\mathbf{x}^*\mathbf{Z}} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{m}_{\mathbf{Z}}$$
$$\boldsymbol{\Sigma}(\mathbf{x}^*) = \mathbf{K}_{\mathbf{x}^*\mathbf{x}^*} - \mathbf{K}_{\mathbf{x}^*\mathbf{Z}} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{K}_{\mathbf{Z}\mathbf{X}}$$

 $\mu(x *)$ : predicted mean at  $x * \Sigma(x *)$ : predictive covariance matrix at x \* K: kernel (covariance) matrix

May 9-12, 2025 🛸 Hong Kong Disneyland, China





## Probability-guided Interval Search Mechanism (PRISM)

- Optimization Target
  - Maximize  $P(L \le y \le U)$  over predicted distribution
- Mechanism: Interval Probability via Multivariate Gaussian
  - 1. For each candidate input x, SMTGP predicts a multivariate normal distribution of outputs:

 $y \sim N(\mu(x), \Sigma(x))$ 

2. PRISM computes the joint probability that all predicted outputs fall within their respective intervals:

$$P(\mathbf{L} \le \mathbf{y} \le \mathbf{U}) = \int_{\mathbf{L}}^{\mathbf{U}} \mathcal{N}(\mathbf{y} | \mathbf{\mu}, \Sigma) d\mathbf{y}$$

 $\mu$ : predicted mean vector  $\Sigma$ : covariance matrix L,U: target intervals





- **1. Introduction**
- 2. Preliminaries
- 3. Proposed Method
- 4. Experiments
- **5.** Conclusion

## Edz



## **Experimental Settings**

- Dataset
  - Origin: Industry challenge from NAURA
  - High-dim variants synthesized with domain knowledge
- Benchmark Tasks
  - 4-input 4-output, 6-input 6-output, 10-input 10-output × Wide/Narrow ranges
- Evaluation Metrics
  - Aver., average number of evaluations
  - SR, success rate (all outputs fall into respective target intervals)

## Main Results

#### Performance Overview

- SMTGP models output correlations to enhance sample efficiency in multi-objective settings
- Interval-oriented PRISM directly optimizes for target satisfaction, not scalar objective
- The only method that consistently succeeds in high-dimensional, constrained settings

| TABLE I Ma | in Experiment | al Results |
|------------|---------------|------------|
|------------|---------------|------------|

| Scenario          | RS    |     | BO    |     | Ours  |            |
|-------------------|-------|-----|-------|-----|-------|------------|
|                   | Aver. | SR  | Aver. | SR  | Aver. | SR         |
| 4I4O-W            | 217   | 21% | 68    | 72% | 25    | 92%        |
| 4I4O-N            | 476   | 14% | 103   | 71% | 37    | <b>89%</b> |
| 6I6O-W            | N/A   | N/A | 183   | 52% | 105   | 81%        |
| 6I6O-N            | N/A   | N/A | 248   | 36% | 138   | 77%        |
| 10I10 <b>O</b> -W | N/A   | N/A | N/A   | N/A | 264   | 65%        |
| 10I10O-N          | N/A   | N/A | N/A   | N/A | 308   | 64%        |

N/A: Success rate too low to produce statistically meaningful evaluation



## **Ablation Study**

| Scenario | Full (Ours) |            | No PRISM |     | No SMTGP |     |
|----------|-------------|------------|----------|-----|----------|-----|
|          | Aver.       | SR         | Aver.    | SR  | Aver.    | SR  |
| 4I4O-W   | 25          | 92%        | 70       | 37% | 52       | 77% |
| 4I4O-N   | 37          | <b>89%</b> | 107      | 36% | 77       | 73% |
| 6I6O-W   | 105         | 81%        | 285      | 35% | 219      | 67% |
| 6I6O-N   | 138         | 77%        | 391      | 31% | 305      | 63% |

TABLE II Ablation Study: Impact of PRISM and SMTGP

- Key Insight: SMTGP and PRISM are both indispensable
  - SMTGP improves sample efficiency by modeling output correlations
  - PRISM guides the optimizer by focusing on target intervals
  - Joint effect: accurate modeling + goal-aware decision making





- **1. Introduction**
- 2. Preliminaries
- **3. Proposed Method**
- 4. Experiments
- **5.** Conclusion



## **Conclusion Summary**

- Addressed Problem
  - Optimize process parameters under multi-objective interval constraints
- Method
  - BO framework integrating SMTGP & PRISM + MIMO Predictor with Soft Physical Constraints
- Results
  - Achieves higher success rate with fewer evaluations, even under highdimensional tuning challenges



Ē



# Thank you for listening!

May 9-12, 2025 🛸 Hong Kong Disneyland, China