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Good_afternoon, everyone./ I'm Xiao Yang, / from Beijing University of Posts and Telecommunications./ I'm honored to present our recent work / here at ISEDA 2025,/ titled / “Multi-Objective Bayesian Target Interval Optimization / for Semiconductor Process Parameters.”/ This research is motivated / by practical difficulties / in modern semiconductor manufacturing —/ especially the challenge of tuning process parameters / to satisfy multiple performance targets / under strict resource constraints./ In today’s talk,/ I'll walk you through / the background, the technical approach, / and the results of our study.
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Here’s a quick overview / of my talk./ I’ll walk through / the background, preliminaries, / proposed methods, experiments, / and wrap up with a conclusion.



1. Introduction

2. Preliminaries

3. Proposed Method

4. Experiments

5. Conclusion

Outline

主持人笔记
演示文稿备注
Let me start / with the Introduction.



• Why It Matters
– Process parameters directly shape film quality, device performance, and yield
– Small tuning errors → severe defects or variability

• What Makes It Difficult
– Objective functions are black-box and multi-dimensional
– Real experiments are slow, expensive, and non-repeatable
– Classical tuning methods are inefficient and not generalizable

Semiconductor Process Parameters Optimization
— A High-Impact Yet Costly Task
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In modern semiconductor fabrication↗,/ optimizing process parameters / is both critical and challenging.These parameters — like temperature, pressure, and gas flow —/ directly shape / film quality, device performance, and yield.Even small tuning errors / may lead to severe defects or variability. However, the optimization task itself / is nontrivial:/ We're dealing with / black-box, high-dimensional objectives;/ real experiments / are slow, expensive, and hard to repeat;/ and classical tuning methods / often fail to generalize or scale.



• A Critical Step in Modern Fabrication
– PVD is key to forming conductive and barrier 

layers in interconnect stacks
– Its output quality directly impacts performance

• Nonlinear and Coupled Parameter Effects
– Outputs (e.g., thickness, uniformity) are sensitive 

to power, pressure, flow, etc.
– Tuning often involves trade-offs across multiple 

conflicting goals

Why PVD Tuning Is Particularly Challenging

A PVD equipment used in advanced 
semiconductor fabrication
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Now let’s focus on / one representative process step:/ Physical Vapor Deposition, / or PVD.PVD plays a key role / in building conductive and barrier layers / in interconnect stacks.Its output — such as film thickness and uniformity —/ has a direct impact / on final chip quality. But tuning a PVD system / is particularly hard.The outputs are extremely sensitive / to settings like power, pressure, and flow.And these parameters / are often coupled and nonlinear.So finding the right configuration / requires balancing multiple,/ sometimes conflicting objectives.



• Not Traditional Scalar Optimization
– Aim to satisfy multiple intervals
– Each output has a target range

• More than Multi-Objective Trade-offs
– Our goal is not Pareto optimality, but to meet all constraints simultaneously

• A Constraint-Driven, Success-Oriented Task
– We care about success rate
– This setting arises naturally in industrial applications like PVD

What Makes This Optimization Problem Unique
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Now, let’s take a moment / to clarify what makes this problem setting / different from typical optimization tasks ↗. First, this is not a traditional scalar optimization —/ we’re not trying to minimize a loss / or maximize a score./ Instead, we aim to satisfy / multiple output intervals./ Each output has a valid target range, / and falling outside that range / means failure. Second, even though this involves multiple objectives,/ our goal is not to find a Pareto front / or trade-off curve./ We need to meet all the constraints at the same time —/ which is much stricter / and more demanding. Finally, this task is constraint-driven / and success-oriented./ We care about the success rate / of finding configurations / where all outputs meet their target intervals.This kind of setting / naturally arises / in industrial applications like PVD.



• Choose input 𝑥𝑥 ∈ 𝑋𝑋 so that all 𝑚𝑚 outputs satisfy their target intervals:

– The indicator      penalizes violations
– Problem = “Hit all intervals with minimal trials”
– This is a constraint-focused optimization problem, solved using probabilistic 

modeling

Problem Formulation
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Now, let’s formulate the problem / more precisely ↗./ Our goal is to choose an input configuration / such that all outputs / satisfy their target intervals. As shown in the equation,/ we’re minimizing the expected number of violations —/ that is, the number of output metrics/ that fall outside their target ranges.  So effectively, the problem becomes:→ “How do we hit all intervals / with minimal trials?” ↗ This is a constraint-focused optimization task,/ and we solve it using probabilistic modeling.
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Before diving into / our proposed method,/ let me first walk you through / some preliminaries/ that form the foundation of our work.



• What is PVD?
– A vacuum-based process for thin-film 

deposition in back-end semiconductor 
fabrication

• How it works: Core Process Flow
– Input: tunable parameters
– Core: physical deposition via sputtering 

or evaporation
– Output: performance metrics

PVD Process

PVD Workflow and Key Process Parameters
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Let’s start / with a quick overview / of the PVD process ↗PVD is a vacuum-based process / for thin-film deposition / in back-end semiconductor fabrication. As shown in the diagram,/ the process begins with tunable input parameters.At the core, deposition is physically carried out / via either sputtering or evaporation.And finally, the outputs we care about / are key performance metrics —/ including film thickness, uniformity, and resistance. In practice, we iterate this process / until all objectives are satisfied.



• Surrogate-Based Optimization
– Use Gaussian Process (GP) to approximate 

expensive function
– Acquisition function balances exploration 

and exploitation

• Standard BO Loop
– Sample → Fit surrogate → Maximize 

acquisition → Evaluate → Update

Bayesian Optimization Basics

Typical Workflow of BO
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Now, let’s briefly review / the basics of Bayesian Optimization, / or BO ↗BO is a surrogate-based optimization technique.It uses a surrogate model — typically a Gaussian Process —/ to approximate the true objective function, / which is usually expensive to evaluate. To decide where to sample next,/ BO uses an acquisition function/ that balances exploration / of uncertain regions,/ and exploitation / of promising areas / based on the surrogate. As shown in the diagram,/ the standard BO loop / proceeds as follows:/ we sample initial data points, / fit the surrogate,/ maximize the acquisition function / to suggest new candidates,/ evaluate their performance, / and update the model. This loop repeats / until the termination condition / is met.



• Gaussian Processes
– Predict mean + uncertainty for any unseen input
– Enables uncertainty-aware decisions

• SMTGP: Sparse Multi-Task Gaussian Process
– Captures cross-objective correlations
– Uses a small set of inducing points 𝑃𝑃 ≪ 𝑁𝑁 to reduce complexity from 
𝑂𝑂(𝑁𝑁3𝑀𝑀3) → 𝑂𝑂(𝑃𝑃3𝑀𝑀3)

𝑃𝑃: 𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝 𝑁𝑁: 𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑑𝑑𝑝𝑝𝑑𝑑 𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝 𝑀𝑀: 𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 𝑝𝑝𝑑𝑑𝑝𝑝𝑡𝑡𝑝𝑝

Inside the Surrogate: GP & SMTGP
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Among the many surrogate modeling options / available,Sparse Multi-Task Gaussian Process, / or SMTGP,/ stands out as particularly well-suited / for our scenario. It builds upon standard Gaussian Processes,/ which predict both the mean and uncertainty / for unseen inputs,/ enabling uncertainty-aware decisions. What makes SMTGP special/ is its ability to model / multiple correlated outputs / together. Instead of working with / the full covariance matrix,/ it introduces a small set of inducing points,/ reducing computational cost/ from big-O of N cubed M cubed,/ to big-O of P cubed M cubed, / where P is much smaller than N. So, SMTGP combines flexibility / with efficiency —/ which makes it highly attractive / for multi-objective optimization / under limited data.
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Now that we’ve covered / the problem setting and relevant background,/ let me walk you through / our proposed method ↗



• Two Core Modules
– Optimizer: BO integrating SMTGP & PRISM
– Predictor: Lightweight neural model for 

system behavior approximation

• Closed Optimization Loop
– Suggest → Predict → Evaluate → Refine →

Repeat

Framework Overview
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Here’s an overview / of our framework ↗It’s structured around / two key modules: / an optimizer and a predictor ↗ The optimizer combines SMTGP / with a custom-designed acquisition function / we call PRISM,/ which helps suggest / promising candidate parameters ↗ Then, the predictor — a lightweight neural network — / estimates the corresponding outputs.These outputs are checked against / the target intervals.If they fall within the range, / we accept the input as a valid solution.Otherwise, we update the BO model / and continue the search. This creates a closed optimization loop, / that iterates over:suggest → predict → evaluate → refine → repeat. This modular design allows our method / to be both data-efficient and constraint-aware.



• MIMO Predictor with Soft Physical Constraints
– Learns from data while encouraging known physical trends

• Bayesian Optimization Framework with Interval Constraints
A.  SMTGP Surrogate Model
– Multi-output GP with sparse inducing points
– Captures cross-objective dependencies efficiently

B. Acquisition Function: PRISM
– Interval-probability-guided search
– Selects points with highest joint interval satisfaction probability

Key Innovations
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Now, let me highlight / the key innovations / of our method ↗ First, we introduce a MIMO Predictor / with Soft Physical Constraints ↗It’s a neural network / that not only learns from data,but also encourages known physical trends / in a soft way.This allows the model / to act as an alternative / for expensive experiments,/ especially under data scarcity. Second, our Bayesian Optimization Framework / is designed/ to handle interval constraints,/ rather than just optimizing single targets. There are two main technical components here ↗ A: The SMTGP Surrogate ModelBy using sparse inducing points,/ this multi-output GP / efficiently captures / cross-objective dependencies. B: The Acquisition Function, PRISMThis is our custom-designed acquisition strategy.PRISM is an interval-probability-guided acquisition function.It selects the input point / with the highest joint probability/ that all outputs fall within / their target intervals. Together, these innovations / make our method/ efficient, reliable, and interval-aware.



• Model Architecture
– Shallow MLP with ReLU activation
– Low cost, captures nonlinear patterns

• Constraint Regularization
– Gradient-based penalty term that 

checks physical consistency (e.g., 
∂y/∂x ≥ 0) during training

• Prior Integration
– Soft constraints help improve accuracy 

with limited data

MIMO Predictor

MLP Block (Detailed View)
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Here is how the MIMO Predictor / is designed ↗It’s built as a shallow MLP / with ReLU activation,/ which keeps it low-cost / while still capturing/ useful nonlinear patterns / from the data. To further guide learning,we add a gradient-based penalty / that checks physical consistency —for example, making sure / that increasing a process input/ leads to an expected increase / in the output. This helps the model / not just fit the data,but also stay consistent / with known physical trends. Finally, we include soft physical priors / in the training objective.These helps improve prediction accuracy,/ especially when only / a small amount of data is available.



• Training Workflow
– Train MLP on initial data
– Evaluate loss after each epoch

• Early Stopping Mechanism
– If no improvement, increase patience counter
– Stop training when patience exceeds limit

MIMO Predictor - Training Flow

Training Workflow of MIMO Predictor
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Let me briefly / walk you through how the MIMO model is trained ↗We start by training the MLP / on the available dataset,/ and evaluating the loss / after each epoch. To avoid overfitting / or unnecessary computation,we adopt an early stopping mechanism.If the loss doesn’t improve / beyond a threshold,we increase a patience counter.Once the patience exceeds / a preset limit,/ training is terminated. This helps keep training efficient, / and avoids overtraining / on noisy data.



• Motivation
– Handle multi-objective constraints 

under scarce data
– Enable interval-based optimization

• Framework Highlights
– Tailored BO system for constrained 

industrial optimization
– Combines model accuracy and 

constraint-aware decision making

Intelligent Target Interval Optimization Algorithm

Enhanced BO Framework for 
Target Interval PVD Parameter Tuning
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Now that we’ve covered the predictor side / of our method,/ let’s move on / to the optimizer ↗which is the other key part / of our framework. This figure shows / the full workflow / of our proposed optimization system ↗It begins with the Initialization phase, / on the left,/ where we define the optimization problem,/ set initial conditions,/ and gather a small initial dataset —/ either from physical experiments / or predicted values/ using the MIMO predictor / we just discussed. Then we enter the Bayesian Optimization Loop,/ which consists of two main stages ↗ First, in the Model Construction stage:/ we construct an SMTGP surrogate,/ and evaluate candidate inputs / using PRISM. Next, in the Data Evaluation stage:/ we select a set of process parameters,/ run an experiment,/ update the dataset / with the new outcome,/ and refine the SMTGP model. This loop continues / until the stopping criteria are met,/ at which point / we return the final optimized process parameters. This design enables / data-efficient, constraint-aware search/ under complex multi-objective conditions. In the next two slides,/ I’ll walk through / these two components in detail —/ first SMTGP, / and then PRISM.



• Multi-Task Modeling
– Shared kernel across objectives → Captures correlations

• Sparse Approximation
– 20 inducing points → Retain accuracy while reducing cost

• Prediction Equations

𝜇𝜇 𝑥𝑥 ∗ : 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛𝑖𝑖 𝑚𝑚𝑛𝑛𝑑𝑑𝑛𝑛 𝑑𝑑𝑝𝑝 𝑥𝑥 ∗ 𝛴𝛴 𝑥𝑥 ∗ : 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖𝑜𝑜𝑝𝑝𝑑𝑑𝑛𝑛𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖𝑛𝑛 𝑚𝑚𝑑𝑑𝑝𝑝𝑛𝑛𝑖𝑖𝑥𝑥 𝑑𝑑𝑝𝑝 𝑥𝑥 ∗
𝐾𝐾: 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘 (𝑖𝑖𝑜𝑜𝑝𝑝𝑑𝑑𝑛𝑛𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖𝑛𝑛) 𝑚𝑚𝑑𝑑𝑝𝑝𝑛𝑛𝑖𝑖𝑥𝑥

SMTGP Surrogate
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Now let’s take / a closer look / at SMTGP,/ the surrogate model / we use inside the optimizer ↗ First, under the Multi-Task Modeling setting,/ we use a shared kernel / across different objectives./ This allows the model to capture correlations / between outputs. Second, we introduce Sparse Approximation/ to reduce computational cost.Over the course / of optimization,/ more and more data points are collected.But instead of using all of them / in full GP computations,/ we select a small number / of inducing points,/ to keep the model efficient,/ while still capturing the essential structure / of the data. Finally, the model provides / both the predicted mean / and the uncertainty/ for any candidate input.These are computed using formulas / shown here,/ which allow us / to make informed decisions/ based not only on expected performance,/ but also on model confidence.



• Optimization Target

– Maximize 𝑃𝑃(𝐿𝐿≤𝑦𝑦≤𝑈𝑈) over predicted distribution

• Mechanism: Interval Probability via Multivariate Gaussian
1. For each candidate input 𝑥𝑥, SMTGP predicts a multivariate normal distribution 

of outputs:

2. PRISM computes the joint probability that all predicted outputs fall within 
their respective intervals:

𝜇𝜇: 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛𝑖𝑖 𝑚𝑚𝑛𝑛𝑑𝑑𝑛𝑛 𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑜𝑜𝑛𝑛 𝛴𝛴: 𝑖𝑖𝑜𝑜𝑝𝑝𝑑𝑑𝑛𝑛𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖𝑛𝑛 𝑚𝑚𝑑𝑑𝑝𝑝𝑛𝑛𝑖𝑖𝑥𝑥 𝐿𝐿,𝑈𝑈: 𝑝𝑝𝑑𝑑𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝 𝑖𝑖𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑑𝑑𝑘𝑘𝑝𝑝

Probability-guided Interval Search Mechanism (PRISM)

( ) ( , )P d≤ ≤ = Σ∫
U

L
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Now let’s move / to the second half / of our optimizer —/ our custom-designed acquisition strategy,/ which we call PRISM ↗ In traditional Bayesian Optimization,/ acquisition functions often focus on/ maximizing the expected value / of a single objective. But in our case, we care about / something fundamentally different —/ not improving a single number,/ but satisfying all target intervals / simultaneously. That’s why / we designed PRISM —/ a purpose-built acquisition function/ that directly maximizes / the probability/ that all predicted outputs / fall within L and U. To compute this,/ we rely on / the predictive distribution / from SMTGP,/ which provides both the mean / and covariance of outputs.Then, PRISM computes / the joint probability/ that all predicted outputs / fall within their respective intervals. This gives us a probabilistic, constraint-aware way/ to decide / where to sample next —/ aligning the search process / with our real-world goal:→ satisfying all specs, / not just optimizing a single value ↗
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Let’s now take / a look at / how the method performs / in practice ↗



• Dataset
– Origin: Industry challenge from NAURA
– High-dim variants synthesized with domain knowledge

• Benchmark Tasks
– 4-input 4-output, 6-input 6-output, 10-input 10-output × Wide/Narrow ranges

• Evaluation Metrics
– Aver., average number of evaluations
– SR, success rate (all outputs fall into respective target intervals)

Experimental Settings
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Now let me briefly introduce / our experimental setup ↗We use datasets derived / from a real industry challenge,/ proposed by NAURA, a major semiconductor equipment manufacturer.We also create high-dimensional variants,/ based on domain knowledge. We run three scenarios,/ and each one is tested / with both wide and narrow target ranges. As for evaluation metrics,/ we focus on two key measures ↗The first is aver., the average number of evaluations / required to find a valid solution —/ that is, a solution where all outputs / fall within their respective target intervals.The second is SR, the success rate,/ which measures how often / the algorithm finds / such a valid solution.



Main Results

• Performance Overview
– SMTGP models output correlations 

to enhance sample efficiency in 
multi-objective settings

– Interval-oriented PRISM directly 
optimizes for target satisfaction, not 
scalar objective

– The only method that consistently 
succeeds in high-dimensional, 
constrained settings

TABLE I  Main Experimental Results

N/A: Success rate too low to produce 
statistically meaningful evaluation
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Now let’s take / a look at / the main experimental results ↗Here, we compare our method / with Random Search and classical BO,/ across all six benchmark scenarios. A few key takeaways:• SMTGP models / output correlationswhich helps improve / sample efficiency / in multi-objective settings• Interval-oriented PRISM / directly optimizes / for target satisfactionrather than / a single target• Ours is the only method / that consistently succeeds /in high-dimensional, constrained settings



Ablation Study

• Key Insight: SMTGP and PRISM are both indispensable
– SMTGP improves sample efficiency by modeling output correlations
– PRISM guides the optimizer by focusing on target intervals
– Joint effect: accurate modeling + goal-aware decision making

TABLE II  Ablation Study: Impact of PRISM and SMTGP

主持人笔记
演示文稿备注
Now let’s look at / the ablation study ↗ This table compares / our full method / with two variants:• No PRISM: / where the acquisition function is replaced/ with Expected Improvement• No SMTGP: / where we use independent GPR instead of a multi-task modelAs shown here, / both components are essential to performance. Key insight:• SMTGP improves / sample efficiency by modeling output correlations.• PRISM guides / the optimizer by focusing on target intervals. The joint effect delivers / accurate modeling / and goal-aware decision making ↗
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To wrap up, / here’s a quick summary / of this work ↗



• Addressed Problem
– Optimize process parameters under multi-objective interval constraints

• Method
– BO framework integrating SMTGP & PRISM  +  MIMO Predictor with Soft 

Physical Constraints

• Results
– Achieves higher success rate with fewer evaluations, even under high-

dimensional tuning challenges

Conclusion Summary
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We tackle the challenge / of optimizing process parameters/ under multi-objective interval constraints,/ which is especially relevant / for complex and costly settings / like PVD. Our approach is a Bayesian Optimization framework/ that combines SMTGP and PRISM,/ along with a MIMO predictor/ enhanced by / soft physical constraints. The proposed method / achieves fewer evaluations,/ higher success rates,/ and remains robust / even in high-dimensional scenarios.



Thank you for listening!
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Thank you for listening!
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