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• The on-chip power grid (PG) transfers voltage and current to each working cell, and IR
drop analysis involves obtaining the IR drop caused by parasitics between the power pads
and cells.
• IR drop analysis becomes very time-consuming in industrial-scale designs using
traditional analysis methods
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Background: Power Grid and IR Drop Analysis
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• Many numerical methods have been proposed for this process, including direct solvers12,
iterative solvers3, and other specialized solvers4.
• The system matrix of a n-node PG network can be formulated as a linear system:

Gx = I (1)

• As the number of nodes in the PG grows exponentially, traditional methods struggle with
longer solution times or even become infeasible due to high computational demands and
memory demands.
• Consequently, the necessity for ML methods becomes evident.

1T. A. Davis, et al. (2010). “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,”
in Article TOMS, pp. 1–17.

2Y. Chen, et al. (2008). “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate,” in Article TOMS, pp. 1–14.

3T.-H. Chen, et al. (2001). “Efficient large-scale power grid analysis based on preconditioned
Krylov-subspace iterative methods,” in Proc. DAC, pp. 559–562.

4Z. Liu, et al. (2024). “PowerRChol: Efficient Power Grid Analysis Based on Fast Randomized Cholesky
Factorization,” in Proc. DAC, pp. 1–6. 4/16

Background: Conventional Numerical Method for PG Analysis
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• To address inefficiencies, machine learning (ML)-based methods have been proposed as
a promising alternative for accelerating IR drop analysis:

1 IREDGe5.

2 MAVREC6

3 PGAU7

4 MAUnet8

• They still face the problem of insufficiently fine modeling granularity.
• They struggle with issues related to model interpretability and generalizability, which
can limit their adoption in practical design environments.

5V. A. Chhabria, et al. (2021). “Thermal and IR drop analysis using convolutional encoder-decoder
networks,” in Proc. ASP-DAC, pp. 690–696.

6V. A. Chhabria, et al. (2021). “MAVIREC: ML-aided vectored IR-drop estimation and classification,” in
Proc. DATE, pp. 1825–1828.

7F. Guo, et al. (2024). “PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net
Architecture and Label Distribution Smoothin,” in Proc. GLSVLSI, pp. 452–458

8M. Wang, et al. (2022). “MAUnet: Multiscale attention U-Net for effective IR drop prediction,” in Proc.
DAC, pp. 1–6. 5/16

Background: Machine Learning for IR Drop Analysis
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• Can numerical and ML methods be combined for a better trade-off in speed,
accuracy, and scalability? Yes!
• Most numerical methods solve large-scale linear systems iteratively, where more
iterations yield greater accuracy but require longer runtime.
• By integrating ML, we can perform fewer iterations to obtain a rough solution and
refine it using ML.
• This fusion enables a better understanding of complex physical or geometric systems,
while offering more fine-grained and efficient modeling.

Traditional Solver+ML > > Traditional Solver/ML
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Key Point: Integrating Numerical and ML Methods
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• IR-Fusion consists of several components:

1 An efficient AMG-PCG solver

2 Hierarchical numerical-structural fusion

3 Inception Attention U-Net model

4 Augmented curriculum learning
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Overall Framework: IR-Fusion
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• In the numerical solution phase

1 A spice parser

2 A circuit generator

3 The algebraic multigrid preconditioned
conjugate gradient (AMG-PCG)
method in PowerRush

• Using fewer iterations to obtain fast
and rough solutions and construct nu-
merical features for ML.
• This rough solution provides the IR
drop values for each node and constructs
detailed hierarchical numerical features,
greatly benefiting ML in understanding
and learning PG systems.

9J. Yang, et al. (2013). “PowerRush: An efficient simulator for static power grid analysis”, in Article.
TLVSI, pp. 2103–2116. 9/16

Numerical Solution using AMG-PCG9
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• Based on the row w and height l from Library Exchange Format (LEF), a design’s layer
of size Wc × Lc translates to an image of W (= Wc//w)× L (= Lc//l) pixels.
• Each metal layer corresponds to a generated feature map, allowing the PG to produce
feature maps that align with the same number of grid layers in total.

Features
Given the limited representation of designs, our method extracts more hierarchical structure
features using the PG spice file and cell layer features:

1 The current map for each layer, representing the current distribution, is allocated
proportionally based on the contribution from each layer, which is tied to resistance.

2 The effective distance, calculated as the reciprocal of the sum of the reciprocals of Euclidean
distances, measures proximity to voltage sources.

3 The PDN density map is derived from the average PDN pitch within each grid as detailed in
the spice file.

4 The resistance and shortest path resistance maps are also computed based on their physical
significance.
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Hierarchical Numerical-Structural Information Fusion
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• Based on PGAU, we design our Incep-
tion Attention Unet.
• The inception module is applied to
enhance the network’s ability to capture
both local details and broader context.
• The convolutional block attention
module (CBAM) is incorporated to fo-
cus on various scales and directions in
subsequent decoder stages.
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Inception Attention U-Net Model
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Evaluation
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• The ICCAD2023 dataset10, specialized for the static IR drop prediction task, is used for
evaluation. It contains 120 designs, 20 of which are real designs, and the rest were
artificially generated based on BeGAN11, named fake designs, close to realistic PGs. We
perform the following setup on the dataset:

1 We follow the contest setup, using 10 real designs for testing and the rest for training.

2 Data augmentation increases the dataset size fourfold, with oversampling applied: fake
designs are doubled, and real ones are quintupled.

3 Following a curriculum learning strategy, fake designs are categorized as “easier,” while real
designs are classified as “harder.”

10Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html.
11V. A. Chhabria, et al. (2021). “BeGAN: Power grid benchmark generation using a process-portable

GAN-based methodology,” in Proc. ICCAD, pp. 1–8. 13/16

Datasets
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• IR-Fusion achieves better performance
with the improvement of 28.3% on
MAE, 14.5% on F1, and 27.6% on
MIRDE, with no significant time cost
increase compared to the SOTA base-
line, i.e., MAUnet.
• IR-Fusion still outperforms all base-
lines in MIRDE, representing more accu-
racy in the worst-case region.
• Our proposed fusion framework
achieves more outstanding and robust
performance within an acceptable run-
time.
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Experiment 1: Main Experiment with Baselines
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• IR-Fusion surpasses PowerRush in all evaluated metrics.
• A key advantage of IR-Fusion is its ability to achieve the same MAE in just 2 iterations,
while PowerRush requires 10 iterations to reach the same level.
• IR-Fusion consistently achieves a higher F1 score— a performance level PowerRush
cannot reach at any iteration.
• Thanks to the fusion of numerical and ML methods, IR-Fusion achieves a better
trade-off between accuracy and efficiency.
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Experiment 2: Trade-off Study
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THANK YOU!
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