

DESIGN, AUTOMATION AND TEST IN EUROPE THE EUROPEAN EVENT FOR ELECTRONIC SYSTEM DESIGN & TEST 31 MARCH – 2 APRIL 2025 LYON, FRANCE

CENTRE DE CONGRÈS DE LYON

IR-Fusion: A Fusion Framework for Static IR Drop Analysis Combining Numerical Solution and Machine Learning

Feng Guo¹, Jianwang Zhai¹, Jingyu Jia¹, Jiawei Liu¹, Kang Zhao¹, Bei Yu², Chuan Shi¹

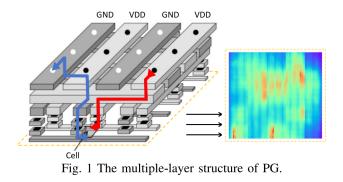
¹ Beijing University of Posts and Telecommunications
² The Chinese University of Hong Kong

Apr. 2, 2025

Introduction

Background: Power Grid and IR Drop Analysis

- The on-chip power grid (PG) transfers voltage and current to each working cell, and IR drop analysis involves obtaining the IR drop caused by parasitics between the power pads and cells.
- IR drop analysis becomes very **time-consuming** in industrial-scale designs using **traditional analysis methods**



Background: Conventional Numerical Method for PG Analysis

- Many numerical methods have been proposed for this process, including direct solvers¹², iterative solvers³, and other specialized solvers⁴.
- The system matrix of a *n*-node PG network can be formulated as a linear system:

$$G\mathbf{x} = \mathbf{I} \tag{1}$$

• As the number of nodes in the PG grows exponentially, traditional methods struggle with **longer solution times** or even become infeasible due to high computational demands and memory demands.

• Consequently, the necessity for ML methods becomes evident.

¹T. A. Davis, et al. (2010). "Algorithm 907: KLU, a direct sparse solver for circuit simulation problems," in *Article TOMS*, pp. 1–17.

²Y. Chen, et al. (2008). "Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate," in *Article TOMS*, pp. 1–14.

³T.-H. Chen, et al. (2001). "Efficient large-scale power grid analysis based on preconditioned Krylov-subspace iterative methods," in *Proc. DAC*, pp. 559–562.

⁴Z. Liu, et al. (2024). "PowerRChol: Efficient Power Grid Analysis Based on Fast Randomized Cholesky Factorization," in *Proc. DAC*, pp. 1–6.

Background: Machine Learning for IR Drop Analysis

• To address inefficiencies, machine learning (ML)-based methods have been proposed as a promising alternative for accelerating IR drop analysis:

- IREDGe⁵.
- 2 MAVREC⁶
- **6** PGAU⁷
- 4 MAUnet⁸
- They still face the problem of **insufficiently fine modeling granularity**.

• They struggle with issues related to model **interpretability and generalizability**, which can limit their adoption in practical design environments.

⁵V. A. Chhabria, et al. (2021). "Thermal and IR drop analysis using convolutional encoder-decoder networks," in *Proc. ASP-DAC*, pp. 690–696.

⁶V. A. Chhabria, et al. (2021). "MAVIREC: ML-aided vectored IR-drop estimation and classification," in *Proc. DATE*, pp. 1825–1828.

⁷F. Guo, et al. (2024). "PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net Architecture and Label Distribution Smoothin," in *Proc. GLSVLSI*, pp. 452–458

⁸M. Wang, et al. (2022). "MAUnet: Multiscale attention U-Net for effective IR drop prediction," in *Proc. DAC*, pp. 1–6.

• Can numerical and ML methods be combined for a better trade-off in speed, accuracy, and scalability? Yes!

- Most numerical methods solve large-scale linear systems iteratively, where more iterations yield greater accuracy but require longer runtime.
- By integrating ML, we can perform fewer iterations to **obtain a rough solution and refine it using ML**.
- This fusion enables a better understanding of complex physical or geometric systems, while offering more fine-grained and efficient modeling.

Traditional Solver+ML > > Traditional Solver/ML

Methodologies

Overall Framework: IR-Fusion

DATE

- IR-Fusion consists of several components:
 - An efficient AMG-PCG solver
 - 2 Hierarchical numerical-structural fusion
 - **③** Inception Attention U-Net model
 - 4 Augmented curriculum learning

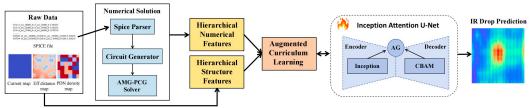


Fig. 2 The overview of IR-Fusion, a fusion framework for static IR drop analysis combining numerical solution and ML.

Numerical Solution using AMG-PCG⁹

DATE

- In the numerical solution phase
 - A spice parser
 - A circuit generator
 - The algebraic multigrid preconditioned conjugate gradient (AMG-PCG) method in PowerRush
- Using fewer iterations to obtain fast and rough solutions and construct numerical features for ML.

• This rough solution provides the IR drop values for each node and constructs detailed hierarchical numerical features, greatly benefiting ML in understanding and learning PG systems.

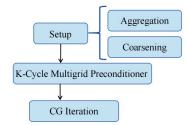


Fig. 3 The illustration of AMG-PCG solver.

⁹J. Yang, et al. (2013). "PowerRush: An efficient simulator for static power grid analysis", in *Article*. *TLVSI*, pp. 2103–2116.

Hierarchical Numerical-Structural Information Fusion

• Based on the row w and height l from Library Exchange Format (LEF), a design's layer of size $W_c \times L_c$ translates to an image of $W = W_c//W \times L = L_c//l$ pixels.

• Each metal layer corresponds to a generated feature map, **allowing the PG to produce feature maps that align with the same number of grid layers in total**.

Features

Given the limited representation of designs, our method extracts more hierarchical structure features using the PG spice file and cell layer features:

- **1** The current map for each layer, representing the current distribution, is allocated proportionally based on the contribution from each layer, which is tied to resistance.
- 2 The effective distance, calculated as the reciprocal of the sum of the reciprocals of Euclidean distances, measures proximity to voltage sources.
- **3** The PDN density map is derived from the average PDN pitch within each grid as detailed in the spice file.
- The resistance and shortest path resistance maps are also computed based on their physical significance.

- Based on PGAU, we design our Inception Attention Unet.
- **The inception module** is applied to enhance the network's ability to capture both local details and broader context.
- The convolutional block attention module (CBAM) is incorporated to focus on various scales and directions in subsequent decoder stages.

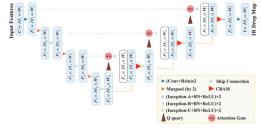


Fig. 4 The architecture of Inception Attention U-Net.

Evaluation

Datasets

13/16

• The ICCAD2023 dataset¹⁰, specialized for the static IR drop prediction task, is used for evaluation. It contains **120 designs**, **20 of which are real designs**, **and the rest were artificially generated** based on BeGAN¹¹, named fake designs, close to realistic PGs. We perform the following setup on the dataset:

- **1** We follow the contest setup, using 10 real designs for testing and the rest for training.
- 2 Data augmentation increases the dataset size fourfold, with oversampling applied: fake designs are doubled, and real ones are quintupled.
- S Following a curriculum learning strategy, fake designs are categorized as "easier," while real designs are classified as "harder."

¹⁰Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html. ¹¹V. A. Chhabria, et al. (2021). "BeGAN: Power grid benchmark generation using a process-portable GAN-based methodology," in *Proc. ICCAD*, pp. 1–8.

Experiment 1: Main Experiment with Baselines

• IR-Fusion achieves better performance with the improvement of 28.3% on MAE, 14.5% on F1, and 27.6% on MIRDE, with no significant time cost increase compared to the SOTA baseline, i.e., MAUnet.

• IR-Fusion still outperforms all baselines in MIRDE, representing more accuracy in the worst-case region.

• Our proposed fusion framework achieves more outstanding and robust performance within an acceptable run-time.

TABLE I Main results. The unit of MAE and MIRDE is $\times 10^{-4}V$ and runtime is s.

Methods	MAE↓	F1↑	Runtime↓	MIRDE↓
IREDGe [17]	3.75	0.49	1.55	7.52
MAVIREC [18]	2.78	0.46	1.97	5.88
IRPnet [19]	1.66	0.61	2.22	5.25
PGAU [20]	1.72	0.60	2.07	5.02
MAUnet [21]	1.06	0.62	2.31	4.38
Contest Winner [31]	1.08	0.57	2.24	4.33
IR-Fusion (Ours)	0.72	0.71	6.98	3.05
il c				0.00
(a) Golden	(b) MAUnet		(c) IR-Fusion (Ours)	

Fig. 6 Visualization of IR Drop distribution of a PG.

Experiment 2: Trade-off Study

- IR-Fusion surpasses PowerRush in all evaluated metrics.
- A key advantage of IR-Fusion is its ability to achieve the same MAE in just 2 iterations, while PowerRush requires 10 iterations to reach the same level.
- IR-Fusion consistently achieves a higher F1 score— a performance level PowerRush cannot reach at any iteration.
- Thanks to the fusion of numerical and ML methods, **IR-Fusion achieves a better trade-off between accuracy and efficiency**.

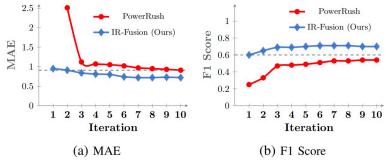


Fig. 7 The analysis results of IR-Fusion and PowerRush [15].

THANK YOU!