Automated Python-to-RTL Transformation and

Optimization for Neural Network Acceleration

Presenter: Chen Yang

School of Electronic Engineering Beijing University of Posts and Telecommunications Beijing 100876, China

2024 · May · 10th

#01 Introduction

#02 Related Work

#03 Method

#04 Experiment

Field-Programmable Gate Array (FPGA)

- low power consumption
- low latency

٠

.

- parallel computing
- Reconfigurability

-Good carrier → Neural Network (NN)

<u>Realized tool</u> Vitis HLS (High-level Synthesis)

- Deployment of NN on FPGA
- NN deployment on FPGA is typically done at the RTL (Register-Transfer Level)

hardware development stage.

• Limitation

- Development at the RTL level is challenging and time-consuming.
- NN networks are mostly based on architectures like PyTorch and implemented in Python language.
- The Vitis HLS tool lacks targeted optimization.

- Deployment of NN on FPGA
- Convert Python to C++ code
- Simplify the development process
- Optimize the implementation of NN deployment on FPGA

How to directly convert NN from Python to C++ code? How can specific optimizations be applied to NN during this process?

HeteroCL

- Multi-paradigm programming environment
- Based on the Python language
- Provides multiple optimization strategies

Limitation

Insufficient specific optimizations for deep learning.

- Data auantization
- Memoru access optimization
- Computational optimization

Lai Y H, Chi Y, Hu Y, et al. Heterocl: A multi-paradigm programming infrastructure for software-defined reconfigurable computing[C]//Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2019: 242-251.

• Dunamic Fixed-Point Quantization [1] Method :

 $l_{int} = 1bmax(x) + 1$, $l_{float} = l_{bw} - l_{int}$

x is the number to be quantized; l_{int} represents the length of integer bits, l_{float} denotes the

width of fractional bits, and l_{bw} indicates the width after quantization.

Advantage:

- Low computational overhead
- Low storage overhead

[1] J. Gong, S. Zhao, H. He, et al. "Design of Quantized CNN Acceleration System Based on FPGA"[J]. Computer Engineering, 2022(3):170-174.

Dunamic Fixed-Point
Quantization
[2] Method : Quantization Method based on Kullback-Leibler (KL) Divergence

$$KL(P, Q) = \sum_{x \in X} \left(P[x] * \log\left(\frac{P[x]}{Q[x]}\right) \right)$$

$$fl_in = (-1)^s \frac{T}{\sum_{i=0}^{B-2} 2^i * x_i}$$

Advantage:

- Taking into account the influence of input on the quantization bit width
- The resulting data width is more rigorous

Computational Optimization

[3] **Method :**

- Loop unrolling
- Loop pipelining

Table 2: Data sharing relations of CNN code

	$input_fm$	weights	$output_fm$
trr	dependent	irrelevant	independent
tcc	dependent	irrelevant	independent
too	irrelevanthtt	independent	independent
tii	independent	independent	irrelevant
i	dependent	independent	irrelevant
j	dependent	independent	irrelevant

[3] C. Zhang, P. Li, G. Y. Sun, Y. J. Guan, B. J. Xiao, and Jason Cong. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks[C]//Proceedings of the 2015 ACM/SIGDA international symposium on field programmable gate arrays. 2015: 161-170

#03 Method

Network Import

- Step:
 - Build placeholders for the input and output of each layer
 - Construct Scheme
 - Construct Schedule
 - Generate code
- Importing Input and Weights:
 - Generating .dat files
 - For inputs, directly reading from the test file
 - For weights, importing into HLS code as constant arrays

1 Support for deep learning interfaces

Deep Learning Interface

• Implementing neural network function layer interface using HeteroCL and conventional library functions.

• Advantages:

- The interface allows for the rapid and convenient construction of neural networks.
- Leveraging the computational graph features of HeteroCL facilitates targeted optimization in subsequent steps.

Interface name	Interface description			
conv2d_nchw	2D convolution layer without bias in nchw order			
conv2d_nchw_bias	2D convolution layer with bias in nchw order			
conv2d_nhwc	2D convolution layer without bias in nhwc order			
avg_pool2d_nchw	2D average pooling layer in nchw order			
avg_pool2d_nhwc	2D average pooling layer in nhwc order			
maxpool2d	2D max pooling layer in nchw order			
softmax2d	2D softmax layer in nchw order			
logsoftmax2d	2D log softmax layer in nchw order			
linear	2D linear layer in nchw order			
relu	2D ReLU layer			
flatten	Convert multi-dimensional array to 2D array			
flatten_nchw	Convert 4D array in nchw order to 2D array			
dense	2D fully connected layer			

2.1 Fixed-point quantization scheme based on data distribution

Key Idea:

Based on statistical analysis of weight distributions, determine bit width according to the ratio between the integer and fractional parts for data with concentrated distributions.

Considering the influence of the input:

- $O_{int} = I_{int} + W_{int} + 1$
- $O_{dec} = \max(I_{dec}, W_{dec})$

Algorithm 1 Global fixed-point Quantization when the distribution is concentrated

Require :max, min, mean

- 1: Initialize maximum integer bit width max_int_width=0, maximum decimal bit width max_dec_width=0, fixedpoint quantization bit width width
- 2: for value in [max, min, mean] do
- 3: Calculate the integer part of the value *int_part* and the decimal part *dec_part*
- 4: Integer bit width *int_width=*[log₂(abs(*int_part*))]+1
- 5: **if** $10 \le \frac{int_part}{dec_part} < 100$ **then**
- 6: $dec_width=4$
- 7: else if $\frac{int_part}{dec_part} \ge 100$ then
- 8: $dec_width=1$ or $dec_width=0$
- 9: else if $int_part=0$ or $\frac{int_part}{dec_part} \le 10$ then
- 10: $dec_width=7 \text{ or } dec_width=10, int_width=0$
- 11: end if
- 12: $max_int_width = max(max_int_width, int_width)$
- 13: $max_dec_width = max(max_dec_width, dec_width)$
- 14: end for
- 15: $width=max_int_width+max_dec_width$

2.2 Memory Access Optimization

- Propagation of intermediate layer computation results
 - Setting up FIFO queues for writing to and reading from data
 - Between layers
 - Support pipelined parallelism for each layer, thereby reducing network latency
- Convolution Buffer
 - Establishing row buffers and window buffers to record data
 - Buffer Reading Queue for retrieving data, Convolution Reading Buffer for accessing buffer data

2.3 Loop computation optimization

- Loop unrolling
- Combined with array partition
- Method : Inserting unroll pragma/ calling Schedule's unroll
- More suitable for loops with low replication overhead
- Loop pipelining
- Combined with array partition
- Method : Inserting pipeline pragma / calling Schedule's pipeline
- More suitable for the outer loop of the convolution operation
- Loop merging
- Merging layers that have continuous computations and identical outer loops.

Alg	gorithm 2 Example of 4D convolutions with FIFO queues
and	row and window buffering
1:	for (int <i>nn</i> =0; <i>nn</i> <2; <i>nn</i> ++) do
2:	//Omitted outer loops
3:	for (int v131=0;v131<3;v131++) do
4:	//update the row buffer
5:	end for
6:	if $(yy=2) \ge 0$ then
7:	for (int v135=0;v135<3;v135++) do
8:	for (int v136=0;v136<3;v136++) do
9:	//update the window buffer
10:	end for
11:	end for
12:	if $(xx-2) \ge 0$ then
13:	float sum=0;
14:	for (int <i>rc</i> =0; <i>rc</i> <3; <i>rc</i> ++) do
15:	for (int $ry=0;ry<3;ry++$) do
16:	for (int $rx=0;rx<3;rx++$) do
17:	//convolution computation
18:	end for
19:	end for
20:	end for
21:	ap_fixed $< 10, 4 > v155 = sum;$
22:	conv1_x_0_conv1.write(v155);
23:	//HLS::Stream write
24:	end if
25:	end if
26:	end for

Experimental Setup

Setup

- Implemented on Xilinx Virtex7 with a clock cycle of 10ns
- Linux ubuntu 4.4.0-210-generic platform
- Vitis HLS High-Level Synthesis from C, C++ and OpenCL v2021.2 (64-bit)
- Vivado v2021.2 (64-bit)
- HeteroCL v0.5 with MLIR

Neural Network and Dataset Selection

- LeNet-5, MNIST dataset for handwritten digit classification task (10 classifications)
- MobileNet-v1, Cifar-100 dataset for image classification task (100 classifications)
- ResNet-18, Cifar-100 dataset for image classification task (100 classifications)

Fixed-Point Quantization Experimental Results

Su 5.8

A 5.6

Conditions:

• The same network, weights, and inputs

Metrics:

• The network's accuracy, latency, and power consumption

Results:

Under the premise of similar final
accuracy, there is a significant
reduction in power consumption and
latency

Power consumption of LeNet-5 on MNIST data set under different data types

Power consumption of ResNet-18 on Cifar-100 data set under different data types

Inference Optimization Scheme

- Select fixed-point bit width based on quantization experimental results.
- Choose optimization schemes according to network characteristics.

Fixed-point quantization bit-width of each network

Notwork	Fixed point bit width			
Network	Integer bit width	fractional bit width		
LeNet-5	12	12		
MobileNet-v1	8 16			
ResNet-18	8	16		

Composition of comprehensive optimization schemes for the three networks

network	fixed point quantization	stream transfer+buffer	loop pipelining	loop unrolling	loop merging
Lenet-5	\checkmark	\checkmark	×	\checkmark	×
Mobilenet-v1	\checkmark	\checkmark	\checkmark	×	\checkmark
ResNet-18	\checkmark	\checkmark	\checkmark	×	\checkmark

Inference Optimization Results

Network	Fixed point width		stream transfer+buffer		loop pipelining		loop unrolling	
	Integer bit width	fractional bit width	delay(ns)	power consumption (W)	delay(ns)	power consumption (W)	delay(ns)	power consumption (W)
LeNet-5	12	12	2.106E+07	1.05	5.342E+06	0.98	4.974E+06	1.12
MobileNet-v1	8	16	5.711E+08	2.34	4.062E+07	2.08	3.842E+07	2.47
ResNet-18	8	16	1.878E+09	3.63	8.431E+08	3.11	8.032E+08	3.58
Network	Fixed point width		loop merging		Comprehensive optimization solutions		Baseline scenario	
	Integer bit width	fractional bit width	delay(ns)	power consumption (W)	delay(ns)	power consumption (W)	delay(ns)	power consumption (W)
LeNet-5	12	12			5.548E+06	1.14	4.699E+07	1.66
MobileNet-v1	8	16	6.383E+08	1.89	4.437E+07	2.12	6.443E+08	3.76
ResNet-18	8	16	1.330E+10	2.63	8.856E+08	2.98	3.334E+10	5.01

THANKS

For Your Attention

