
Automated Python-to-RTL Transformation
and
Optimization for Neural Network Acceleration
Presenter：Chen Yang

2024·May·10th

School of Electronic Engineering

Beijing University of Posts and Telecommunications

Beijing 100876, China

Introduction

Related Work

Method

Experiment

#01

#02

#03

#04

C
O
N
T
E
N
T
E
S

Introduction
#01

Background

Field-Programmable Gate Array (FPGA)

• low power consumption

• low latency

• parallel computing

• Reconfigurability

• ……

Neural Network（NN）Good carrier

Realized tool Vitis HLS
(High-level Synthesis)

General Method

lDeployment of NN on FPGA

– NN deployment on FPGA is typically done at the RTL (Register-Transfer Level)

hardware development stage.

l Limitation

– Development at the RTL level is challenging and time-consuming.

– NN networks are mostly based on architectures like PyTorch and implemented

in Python language.

– The Vitis HLS tool lacks targeted optimization.

Motivation

lDeployment of NN on FPGA

– Convert Python to C++ code

– Simplify the development process

– Optimize the implementation of NN deployment on FPGA

How to directly convert NN from Python to C++ code?

How can specific optimizations be applied to NN during this process?

Related Work
#02

Related Work

lHeteroCL

– Multi-paradigm programming environment

– Based on the Python language

– Provides multiple optimization strategies

Lai Y H, Chi Y, Hu Y, et al. Heterocl: A multi-paradigm programming infrastructure for software-defined reconfigurable computing[C]//Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2019: 242-251.

l Limitation
 Insufficient specific optimizations for deep learning.

– Data quantization
– Memory access optimization
– Computational optimization

Related Work

lDynamic Fixed-Point
Quantization

[1] J. Gong, S. Zhao, H. He, et al. ”Design of Quantized CNN Acceleration System Based on FPGA”[J]. Computer Engineering, 2022(3):170-174..

[1] Method :

 ���� = 1���� � + 1 , ������ = ��� − ����

 � is the number to be quantized; ���� represents the length of integer bits, ������ denotes the

 width of fractional bits, and ��� indicates the width after quantization.

 Advantage:

• Low computational overhead

• Low storage overhead

Related Work

lDynamic Fixed-Point
Quantization

[2] X. K. Lei, Z. G. Yin and R. L. Zhao. ”FPGA-based convolutional neural network fixed-point acceleration”[J]. Journal of Computer Applications, 2020(10):2811-2816.

[2] Method : Quantization Method based on Kullback-Leibler (KL) Divergence

 KL P, Q = �∈� � � ∗ log
� �
� �

��_�� = −1 � �
 �=0
�−22� ∗ ��

Advantage:

• Taking into account the influence of input on the quantization bit width

• The resulting data width is more rigorous

Related Work

lComputational Optimization

[3] C. Zhang, P. Li, G. Y. Sun, Y. J. Guan, B. J. Xiao, and Jason Cong. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks[C]//Proceedings
of the 2015 ACM/SIGDA international symposium on field programmable gate arrays. 2015: 161-170

[3] Method :

• Loop unrolling

• Loop pipelining

Method
#03

Total Flow

Network Import

l Step：

– Build placeholders for the input and output of each layer

– Construct Scheme

– Construct Schedule

– Generate code

l Importing Input and Weights：

– Generating .dat files

– For inputs, directly reading from the test file

– For weights, importing into HLS code as constant arrays

1 Support for deep learning interfaces

Deep Learning Interface

l Implementing neural network function layer interface

using HeteroCL and conventional library functions.

l Advantages:

– The interface allows for the rapid and convenient

construction of neural networks.

– Leveraging the computational graph features of

HeteroCL facilitates targeted optimization in

subsequent steps.

2.1 Fixed-point quantization scheme based on data distribution

Key Idea:
Based on statistical analysis of weight distributions,

determine bit width according to the ratio between the

integer and fractional parts for data with concentrated

distributions.

Considering the influence of the input:
• ���� = ���� +���� + 1

• �dec = max ����,����

2.2 Memory Access Optimization

l Propagation of intermediate layer computation results

– Setting up FIFO queues for writing to and reading from data

– Between layers

– Support pipelined parallelism for each layer, thereby reducing network

latency

l Convolution Buffer

– Establishing row buffers and window buffers to record data

– Buffer Reading Queue for retrieving data, Convolution Reading Buffer for accessing buffer data

2.3 Loop computation optimization

l Loop pipelining
– Combined with array partition

– Method : Inserting pipeline pragma / calling Schedule's pipeline

– More suitable for the outer loop of the convolution operation

l Loop unrolling
– Combined with array partition

– Method : Inserting unroll pragma/ calling Schedule's unroll

– More suitable for loops with low replication overhead

l Loop merging
– Merging layers that have continuous computations and identical

outer loops.

Experiment
#04

Experimental Setup

Setup

• Implemented on Xilinx Virtex7 with a clock cycle of 10ns

• Linux ubuntu 4.4.0-210-generic platform

• Vitis HLS - High-Level Synthesis from C, C++ and OpenCL v2021.2 (64-bit)

• Vivado v2021.2 (64-bit)

• HeteroCL v0.5 with MLIR

Neural Network and Dataset Selection

• LeNet-5, MNIST dataset for handwritten digit classification task (10 classifications)

• MobileNet-v1, Cifar-100 dataset for image classification task (100 classifications)

• ResNet-18, Cifar-100 dataset for image classification task (100 classifications)

Fixed-Point Quantization Experimental Results

Conditions:
• The same network, weights, and

inputs

Metrics:
• The network's accuracy, latency, and

power consumption

Results：
• Under the premise of similar final

accuracy, there is a significant

reduction in power consumption and

latency

Inference Optimization Scheme

• Select fixed-point bit width based on quantization

experimental results.

• Choose optimization schemes according to

network characteristics.

Fixed-point quantization bit-width of each network

Composition of comprehensive optimization schemes for the three networks

Network
Fixed point bit width

Integer bit width fractional bit width

LeNet-5 12 12

MobileNet-v1 8 16

ResNet-18 8 16

Inference Optimization Results

Network

Fixed point width stream transfer+buffer loop pipelining loop unrolling

Integer bit width fractional bit width delay(ns) power consumption (W) delay(ns) power consumption (W) delay(ns) power consumption (W)

LeNet-5 12 12 2.106E+07 1.05 5.342E+06 0.98 4.974E+06 1.12

MobileNet-v1 8 16 5.711E+08 2.34 4.062E+07 2.08 3.842E+07 2.47

ResNet-18 8 16 1.878E+09 3.63 8.431E+08 3.11 8.032E+08 3.58

Network

Fixed point width loop merging Comprehensive optimization solutions Baseline scenario

Integer bit width fractional bit width delay(ns) power consumption (W) delay(ns) power consumption (W) delay(ns) power consumption (W)

LeNet-5 12 12 　 　 5.548E+06 1.14 4.699E+07 1.66

MobileNet-v1 8 16 6.383E+08 1.89 4.437E+07 2.12 6.443E+08 3.76

ResNet-18 8 16 1.330E+10 2.63 8.856E+08 2.98 3.334E+10 5.01

THANKS
For Your Attention

