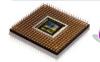
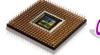
Peeling Algorithm for Custom Instruction Identification

Kang Zhao, Jinian Bian

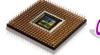
EDA Lab, Dept. Computer Science & Technology Tsinghua University, Beijing 100084, China Dec 8, 2010



- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion

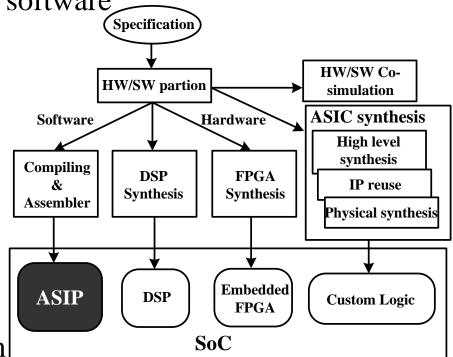


- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion



Introduction

- SoC: system-on-a-chip
 - Integration of hardware and software
 - Need special technique and methodology
 - ASIP
 - Application specific instruction-set processor
 - A special part in the SoC system design
 - Provide a tradeoff between efficiency and flexibility

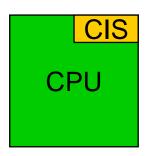


ASIP in the Embedded system design

4

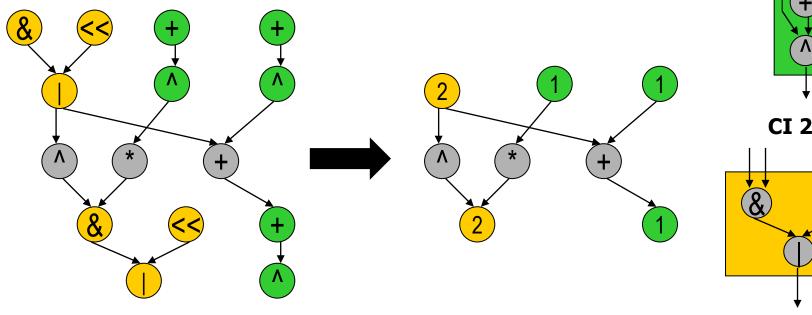
Multimedia Background

- Cell phones, digital cameras, etc. spread everywhere
 High performance & low power consumption
- ASIP = General core + application specific instructions
 - Instruction-set extensible processor
 - CIS: custom instruction set
 - Custom instructions in ASIP can be viewed as hardware for special purpose to acceleration the processor

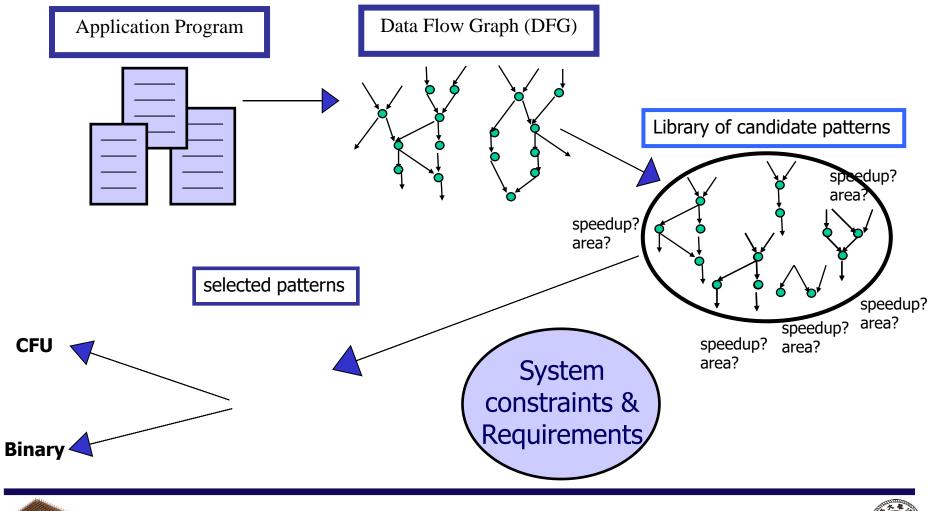


Acceleration through Custom Instruction

- Custom Instructions (CI)
 - Motivation: Increase the performance of processors
 - Accelerate the computing rate with hardware design **CI 1**
 - Combine multiple primitive operations

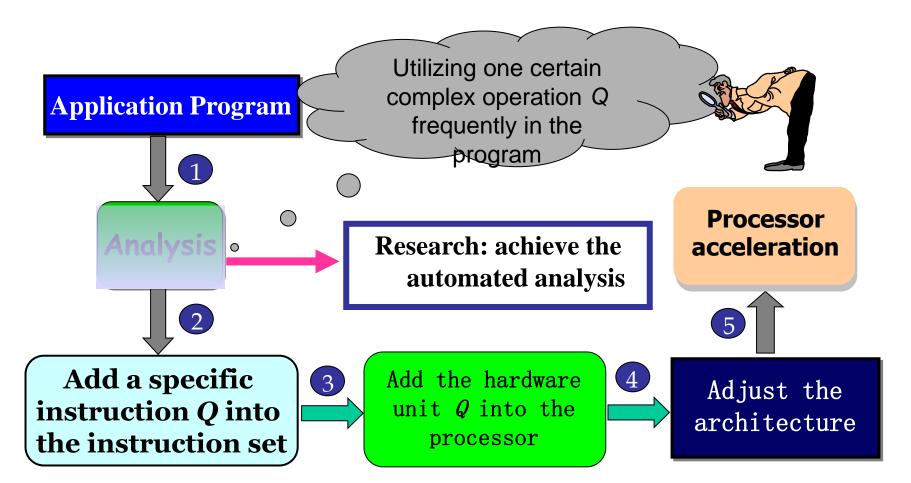


How to Custom Instructions

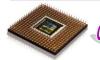


Custom Instruction Generation

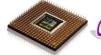
Illustration Example



An illustration example of the purpose of our research

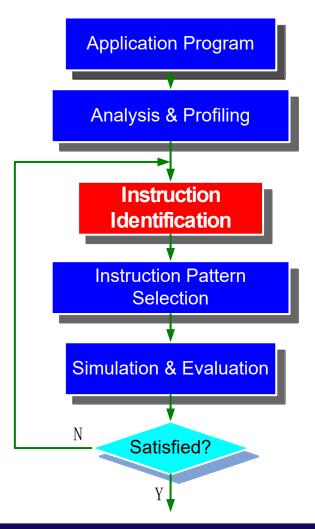


- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion



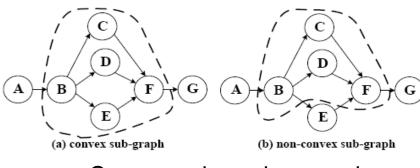
Instruction Identification

- Instruction Identification Problem
 - Input
 - Data Flow Graph (DFG)
 - Profiling results
 - Output
 - Candidate custom instructions

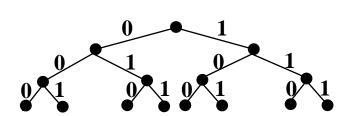


Problem Formulation

- Problem:
 - Given a directed acyclic graph G(V, E), find all the feasible sub-graphs that satisfy the following two conditions:
 - The subgraph is connected
 - Only the convex sub-graph is feasible
 - Design space: exponential



Convex subgraph example



Exponential design space

- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion

Strategy

- Large graph \rightarrow small graph
 - Since the maximum graph must be convex, we may begin from the larger one
 - Obtain smaller subgraphs through partitioning on the large graphs
- Reduce the exploration space
 - Partition based on each node will bring repeated enumerations
 - We will use the peeling node instead of each node, to avoid the repeated enumerations

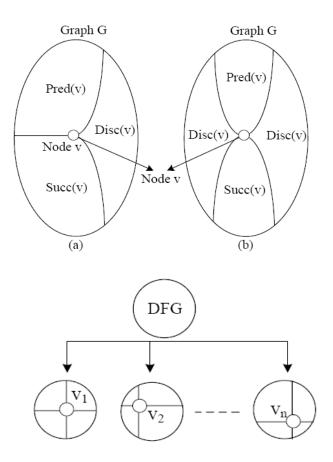


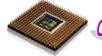
Illustration for the partitioning based on each node

13

Peeling node

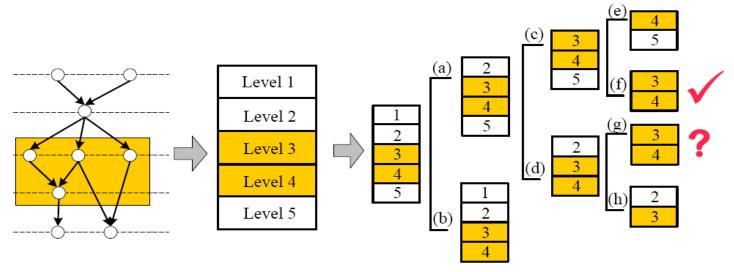
- **Definition:** the source and sink nodes will be called as peeling nodes
 - The partitioning through deleting each peeling nodes
 - We could get the same results with the partitioning based on each node
- **Dele(G, u):** u is the peeling node of the graph G. The partition will be:

$$\begin{aligned} - & Dele(G, u) = G - \{u\} \\ &= \begin{cases} Succ(G, u) \cup Disc(G, u) & \text{if } u \in source(G) \\ Pred(G, u) \cup Disc(G, u) & \text{if } u \in sink(G) \end{cases} \end{aligned}$$

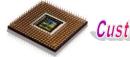


Peeling process

- **Theorem:** The peeling process can get the same results with the partitioning based on each node
 - However, there will be repeated enumerations

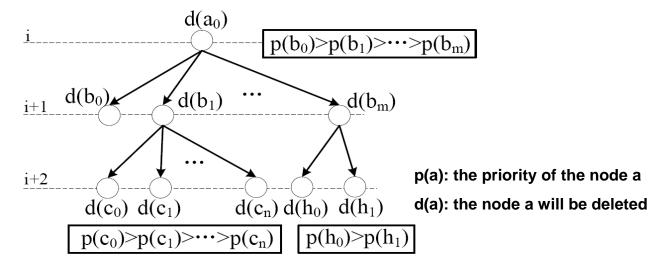


Example for the partition based on peeling nodes



Pruning

- **Priority:** Let *u* and *v* be two peeling nodes for the pattern *G*. If *Dele(G,u)* is enumerated earlier than *Dele(G, v)*, the priority of u will be higher than *v*. This order is named as the local priority.
- **Theorem:** The local priority has three characters: 1) the partial order; 2) the local effect; 3) the genetic.



Local priority defined to avoid repeated enumeration

Algorithm

• (1) Get the maximal valid subgraph

V2

V5

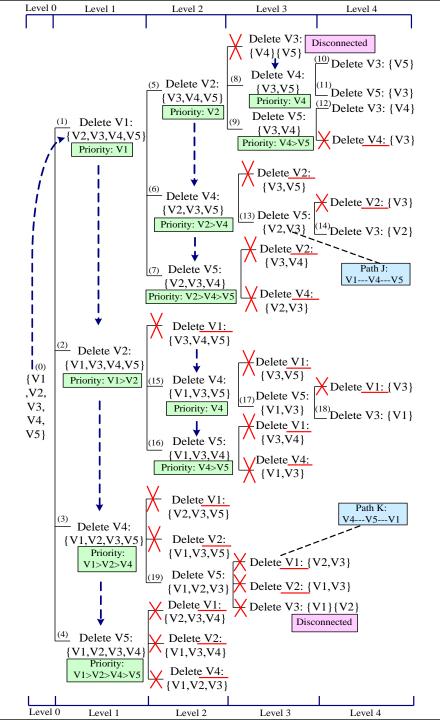
V1

V4

V3

- (2) Delete each peeling node
- (3) After deleting each peeling node, calculate their own priority
- (4) If the priority is violated, the partition process on this branch will stop
- (5) The iteration will stop when the minimum valid subgraph appears

$\mathbf{partition}(G, X)$					
1.	$\mathbf{if}(G = \emptyset)$ return;				
2.	$P \Leftarrow \operatorname{source}(G) \cup \operatorname{sink}(G);$				
3.	for (each node $u \in P$)				
4.	$\mathbf{if}(\text{violate_priority}(u, X)) \mathbf{or} \operatorname{disconnected}(G, u)$				
5.	$P \Leftarrow P - \{u\};$				
6.	else				
7.	patterns.add(Dele(G, u));				
8.	for (each node $u \in P$)				
9.	$X' \Leftarrow \text{change_priority}(P, u, X);$				
10.	partition(Dele(G, u), X');				



- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion

Experimental Setup

- Setup
 - Program with C++ on a Linux machine
 - Intel Xeon 3GHz CPU and 4GB memory
 - OS: Red Hat Enterprise Linux AS release 3
 - Gcc 2.90 with option -03
- Benchmarks
 - Some benchmarks from MediaBench
 - DFGs come from the DOT files represented in MediaBench
- Evaluation
 - Execution time: C++ function *clock()* and the macro CLOCKS_PER_SEC

Custom Instruction Generation

Results

- Comparison
 - The identification algorithm in IEEE Trans.CAD 2007, referred as "CH"
 - Our proposed method is referred as "PE"
- Experimental results
 - The enumeration results are shown in "pattern" column (total number of valid patterns)
 - PE is faster than CH; however, the speedup effect is not super. The reason is that they both used the predecessor and the successor to satisfy the convexity constraint.

1					1		
ID	MESA Functions	Node	Edge	pattern	Identification time (s)		Speedup (\times)
		1.040	2080	passer	CH	\mathbf{PE}	$\rm PE/CH$
1	Horner Bezier	18	16	34	0.010	0.000	11.11
2	Feedback Points	53	50	114	0.030	0.000	33.33
3	Invert Matrix	333	354	9786	122.870	1.980	62.06
4	Smooth Triangle	197	196	329	0.840	0.010	84.00
5	Matrix Multiplication	109	116	625	0.590	0.040	14.75

- Introduction
- Problem Formulation
- Algorithm
- Experiments
- Conclusion

Conclusion

- Contributions
 - We propose a peeling algorithm for the custom instruction identification, and this algorithm proposes a local priority for an exhaustive pruning process
 - The experiments indicate that the peeling algorithm can speedup the identification and can identify the custom instructions quickly.

Custom Instruction Generation

