
EDA Lab, Tsinghua University
Dept.. Computer Science & Technology1

Hybrid Memory Access Optimization

based on Custom-instruction Scheduling

Kang Zhao, Jinian Bian, Sheqin Dong,

Yang Song and Satoshi Goto

EDA Lab, Dept. Computer Science & Technology

Tsinghua University, Beijing 100084, China

May 5, 2008

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology2

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology3

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology4

Introduction

• Memory access
– Memory issues often play a very important role in the embedded

system design, which impact significantly the embedded system's
performance, power, and the cost of implementation

– To accelerate the memory access, the use of efficient access is
greatly encouraged to promote the access bandwidth

– However, speed requirement is not principal for all applications,
instead, how to get an efficient area becomes the main task. So
the area-speed tradeoff of the memory access must be explored

• Focus
– Page access, which is one of the most efficiently used DRAM

accesses

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology5

Literature

• Software optimization mode

– [3] proposed an algorithm called MACCESS-opt. It used the efficient page access,
and considered three techniques: determination of memories, array mapping to
memories, and scheduling of memory access operations

– The advantage of MACCESS-opt is that it can achieve a maximum speedup by
scheduling the code under area/cost constraints

• Hardware optimization mode

– The strategy is adopting custom instructions to minimize the total memory access
latency based on the ASIP

– ASIP = General core + application specific instructions

– Custom instructions in ASIP can be viewed as hardware for special purpose to
accelerate the processor

• Limitations

– The software optimization must be implemented under the hardware constraints;
and the precondition of the hardware optimization is the memory allocation, which
is implemented by software optimization

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology6

Hybrid Optimization Workflow

Application Program

Analysis

Memory
Allocation

Specific
Instruction

Customization

Instruction
Scheduling

Binary Parsing
Access

acceleration

1

2

3 4

5

Hybrid memory access

optimization workflow

An illustration for the proposed hybrid method based on HW/SW co-optimization

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology7

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Theoretical Analysis

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology8

Normal mode & Page mode

• Normal access mode
– A row decoding stage is first used to copy the

entire row of words to the row buffer, and then a
column decoding stage is used

– Finally, a precharging stage is performed to
prepare the execution for the next memory
access operation

• Page access mode
– If the word to be accessed in the next operation

has already been in the same page that was
retrieved just before, then the execution of row
decoding is not needed

– The latency of page mode is much shorter than
the normal mode, and their difference focuses
on whether the utilizing array variables are the
same or not between neighbor operations

• Key: convert normal mode to page mode as
many as possible

(b) Example with the DAG

write D[i]

read A[i]

read B[i]

read B[i]

read C[i]

read C[i]

read D[i]

read D[i+1]

write C[i+1]

op1

op3

op5

op2

op4

op7

op9

op8

op6

write B[i+1]

read A[i]

(c) The source code for the example (b)

op1: e = A[i] + B[i] ; read A[i], read B[i]

op2: f = B[i] - C[i] ; read B[i], read C[i]

op3: g = A[i] – 3 ; read A[i]

op4: h = C[i] + D[i] ; read C[i], read D[i]

op5: B[i+1] = e – g ; write B[i+1]

op6: D[i] = h ; write D[i]

op7: i = f – h

op8: t = D[i+1] + 4 ; read D[i+1]

op9: C[i+1] = i + t ; write C[i+1]

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology9

Motivational Example

• Memory Allocation

– Variables A and C are assigned into the same memory module. If A and C appear

in the same operation, they cannot be accessed in parallel

– If we change the results in Fig.(d) and put A and B into the same module, both

op1 and op4 will be accessed through two NRs, and the latency will be longer

– page read (PR), normal read (NR), page write (PW), normal write (NW)

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

3. read A[i] NR :NR

4. read C[i] NR read D[i] NR :NR

5. write B[i+1] NW :NW

6. write D[i] NW :NW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Area: 18.4894 mm2

Total latency: 41 cycles

Memory configuration:

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

35. read A[i] NR :NR

 write B[i+1] PW :PW

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 31 cycles

Custom instruction generation:

op35op3 op5+ =
write B[i+1]read A[i] read A[i]

write B[i+1]

op# delay

1. read A[i] NR read B[i] NR :NR

35. read A[i] PR :PR

 write B[i+1] PW :PW

2. read C[i] NR read B[i] PR :NR

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 28 cycles

Scheduling:

op1->op2->op35->op4->op6->op8->op9

op1->op35->op2->op4->op6->op8->op9

old:

new:

(d) Memory configuration for the

operation schedule in (c)

(e) Custom instruction generation under

the memory configuration in (d)

(f) Scheduling results based on the

custom instruction in (e)

B

C D

A

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology10

Motivational Example

• Custom instruction generation

– If op3 is combined with op5, the mode for op5 will change from NW to PW

– Besides, since op5 disappears and op6 will run after op4 directly, so the access

mode of op6 should be changed from NW to PW

– Suppose that we combine op1 and op3 together instead, and then the NR latency

for op3 will be omitted

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

3. read A[i] NR :NR

4. read C[i] NR read D[i] NR :NR

5. write B[i+1] NW :NW

6. write D[i] NW :NW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Area: 18.4894 mm2

Total latency: 41 cycles

Memory configuration:

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

35. read A[i] NR :NR

 write B[i+1] PW :PW

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 31 cycles

Custom instruction generation:

op35op3 op5+ =
write B[i+1]read A[i] read A[i]

write B[i+1]

op# delay

1. read A[i] NR read B[i] NR :NR

35. read A[i] PR :PR

 write B[i+1] PW :PW

2. read C[i] NR read B[i] PR :NR

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 28 cycles

Scheduling:

op1->op2->op35->op4->op6->op8->op9

op1->op35->op2->op4->op6->op8->op9

old:

new:

(d) Memory configuration for the

operation schedule in (c)

(e) Custom instruction generation under

the memory configuration in (d)

(f) Scheduling results based on the

custom instruction in (e)

B

C D

A

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology11

Motivational Example

• Scheduling

– The reason to use the normal mode is that the previous operation uses different

arrays, so we can make the same arrays exist in the previous operation

– For example, when the position of op2 and op35 is exchanged, the NR will be

changed to PR, and then the total latency is reduced

– It is feasible to reduce the total latencies based on scheduling

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

3. read A[i] NR :NR

4. read C[i] NR read D[i] NR :NR

5. write B[i+1] NW :NW

6. write D[i] NW :NW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Area: 18.4894 mm2

Total latency: 41 cycles

Memory configuration:

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

35. read A[i] NR :NR

 write B[i+1] PW :PW

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 31 cycles

Custom instruction generation:

op35op3 op5+ =
write B[i+1]read A[i] read A[i]

write B[i+1]

op# delay

1. read A[i] NR read B[i] NR :NR

35. read A[i] PR :PR

 write B[i+1] PW :PW

2. read C[i] NR read B[i] PR :NR

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 28 cycles

Scheduling:

op1->op2->op35->op4->op6->op8->op9

op1->op35->op2->op4->op6->op8->op9

old:

new:

(d) Memory configuration for the

operation schedule in (c)

(e) Custom instruction generation under

the memory configuration in (d)

(f) Scheduling results based on the

custom instruction in (e)

B

C D

A

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology12

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology13

Definitions

• G (V, E) is a date flow graph (DFG), where V and E are the sets of nodes
and edges. Then the weight of G (V, E) is the length of its longest path

– Since the custom instruction is synthesized by combining basic operations, so if
each basic operation is mapped to a certain node in the DFG, then each custom
instruction will be mapped to a feasible sub-graph

• G' (V', E') be a sub-graph of G(V, E). For ∀v1, v2∈V', if all the nodes on
the paths between v1 and v2 are contained in V', G' is a convex graph;
Otherwise, G' is non-convex

– If a sub-graph is mapped to a custom instruction, it must be convex. Because
non-convex graph can result in non-automated execution for the instructions

(b) non-convex sub-graph(a) convex sub-graph

A B

D

E

F G

C

A B

D

E

F G

C

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology14

Problem

• Definition: each custom instruction is corresponding to a feasible sub-

graph G', which satisfies two conditions:

– the number of incoming and outgoing arcs are limited, because each sub-

graph is mapped to an instruction, and the operand number is also limited

– G' must be a convex sub-graph

• Problem: Given a DFG G of high-level code with array access Arrays,

module library M and memory area constraint Areamax, then generate a

scheme of memory allocation f, custom instruction set and scheduling S,

so that the access latency delay(G) is minimum not exceeding Areamax

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology15

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology16

(1) Memory Configuration

• Motivation

– Because the focus of custom instruction and scheduling is to reduce the total

latency of memory access, and the memory allocation result is just the

precondition of latency calculation, the motivation of this step is to satisfy the

memory area constraint first

• Method

– We can consider to combine each

two arrays together from low

latency to high latency. Since the

area cannot exceed Areamax, so the

result near to the deadline will be

selected, and the final result

indicates that A, C and D are

assigned to the same memory

module

A B C D
Area:26.148 mm

2

Latency: 28 ns

Area:23.9048 mm2

Latency: 28 ns

Area:18.4894 mm2

Latency: 36 ns

Area:15.3171 mm
2

Latency: 46 ns

Areamax=20.0

Initial memory configuration:

A: M1, B: M3, C: M1, D: M3

area: 26.1480 mm
2

Memory configuration example

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology17

(2) Custom Instruction Generation

• Huge search space

– The basic strategy of the instruction customization is to combine basic
operations in the DFG, i.e. sub-graph selection

– For a DFG G with n nodes, there will be 2n candidate sub-graphs

• Customization strategy

– To avoid searching the useless candidates, we first select some seed nodes
under the function F1(distance, priority), and then grow from them under the
best direction which is decided by the guide function F2(distance, reduction)

• distance denotes the space between the current node and the longest path.
If distance is smaller, the current node will hold higher potential to be
contained in the candidate sub-graph

• priority is defined as: priority=in+out+in×out, where in and out mean the
numbers of incoming and outgoing arcs. When priority is bigger, the
potential of selecting the current node as the seed node is higher

• Suppose that reduction represents the quantity of the latency reduction
after the current node is combined with the seed node

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology18

Seed-growth Algorithm

• Guide functions

–

– F1 is used to select the seed node which is nearer the longest path and hold a

higher priority; F2 is adopted to choose the node which should be combined

with the current seed node

op1op3

op5

op2op4

op7

op9op8

op6

Seed: op6

Candidate reduction

{op6, op4} 5

{op6, op8} 0

{op6, op4, op8} S

 Result: {op6, op4}->op46

op1op3

op5

op2op46

op7

op9

op8

Seed: op7

Candidate reduction

{op7, op2} 0

{op7, op6, op4} 0

{op7, op2, op6, op4} -5

{op7, op9} 0

{op7, op9, op2} S

{op7, op9, op6, op4} N

{op7, op9, op6, op4, op8} S

op1op3

op5

op2op46

op7

op9

op8

Seed: op8

Candidate reduction

{op8, op6, op4} S

{op8, op9} 0

{op8, op9, op6, op4} S

op1op3

op5

op2op46

op7

op9

op8

Seed: op5

Candidate reduction

{op5, op1} 10

{op5, op3} 10

{op5, op1, op3} 15

Result: {op5, op3, op1}->op135

(a) seed=op6 (b) seed=op7 (c) seed=op8 (d) seed=op5

1 2

1

1

distance reduction
F F

priority distance

+
= =

+

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology19

(3) Instruction Scheduling
• Constraints

– Not all the positions can be changed because of the data dependency

• Scheduling strategy

– Sort the order first from high to low priority (priority=in+out+in×out)

– Then each operation v will be selected under this priority order and will be

moved to find the maximum latency reduction

– The move range of v is limited in [begin, end], where begin stands for the

nearest operation which has an outgoing arc to v, and end is the nearest

operation which has an incoming arc from v

(a) Priority enumeration

op2op46

op7

op9

op8

op135

2=0+2+0*2 1=0+1+0*1

5=2+1+2*13=1+1+1*1

0=0+0+0*0
2=2+0+2*0

Priority: op7>op8>op46=op9>op2>op135

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology20

Experiments

• Focus: memory access latency

– Input: a set of benchmarks in numerical recipes

– Output: access cycles based on the library in [3]

• Experimental results

– The third column shows the latency results using the previous system MACCESS-

opt in [3] for compare

– HyMacs can achieve about 20% improvements than the system MACCESS-opt in

[3], where custom instructions and scheduling contribute about 15% and 5%

respectively

Memory module library in [3]

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology21

Contents

• Introduction

• Motivation

• Problem Formulation

• Methodology

• Conclusion

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology22

Conclusion

• Our contributions

– We propose a hybrid memory access system to reduce

the whole memory access latency which integrates the

custom instruction generation and scheduling algorithm

– By applying a hardware/software co-design strategy, the

hybrid system can obtain an improvement on the access

latency reduction than the previous method which only

considers the software optimization

EDA Lab, Tsinghua University
Dept.. Computer Science & Technology23

