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Abstract— To reduce the huge search space when customizing 
instruction-level accelerators for the application specific 
instruction-set processor (ASIP), this paper proposes an 
automated instruction-level hardware/software partition method 
based on the data flow graph exploration. This method integrates 
the instruction identification and selection using an iterative 
improvement strategy. The search space is reduced via 
considering the performance factors during the identification. 
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I.  INTRODUCTION 
The application specific instruction-set processor (ASIP) 

can increase the processor performance through the specific 
instruction sets customization, which can be viewed as the 
special hardware in the processor [1]. Except for the instruction 
set architecture (ISA), ASIP also allows designers to customize 
the underlying microarchitecture for a specific domain. 

To improve the efficiency, application programs are usually 
implemented through a hardware/software partition: if a 
complex operation is used frequently in the program, custom 
instructions will be extended to speedup the computation; if not, 
it will be compiled with the primitive instructions. In this 
process, the instruction set extension (ISE) plays a very 
important role. The basic strategy is to combine the primitive 
operations in the data flow graph (DFG). To implement it, two 
problems should be solved: 1) instruction identification, which 
enumerates all feasible subgraphs from the program's DFG; 2) 
instruction selection, which selects an optimal instruction set 
under various constraints [2]. In the traditional flow, candidate 
instructions are first enumerated via the identification process, 
and then the instruction subset which satisfies the performance 
constraints will be selected via the selection process. In this 
flow the identification guarantees the architectural constraints, 
and the selection guarantees the system constraints. 

However, there are some limitations. The flow is divided 
into two processes, which may bring much redundant work. 
For example, the first process does not consider the 
performance constraints; instead, it only considers the 
architecture constraints. After a full enumeration, the second 
process must deal with huge quantities of candidates. If the 
system constraints can be considered in the identification, there 
will be fewer redundant candidates. Furthermore, the search 
space is exponential (2n) and it is a serious problem for a full 
identification. If we insert the system constraints into the 
identification process, it may be able to reduce the search space. 

To settle this issue, this paper will propose a methodology 
based on the graph exploration. How to enhance the efficiency 
and reduce the search space are two focuses. Section II will 
discuss the related work. In Section III, the problem will be 
formulated. Section IV proposes a novel methodology and the 
details are presented in Section V. Section VI will present the 
experimental results. The conclusion is drawn in Section VII. 

II. RELATED WORKS 
The instruction-level partitioning includes two processes: 

instruction identification and instruction selection. 

1) The motivation of the identification is to enumerate all 
feasible subgraphs. It has no relation with the system 
performance; instead, it focuses on the architectural constraints. 
Atasu first proposed a breadth search method in [3], which 
used a full binary tree model. To reduce the search space, [3] 
used a pruning strategy, which can avoid enumerating invalid 
subgraphs. Then Pozzi [1] improved it by adding a pruning 
criterion based on the input number constraints. The limitation 
of this algorithm is that the search space was still exponential. 
[2] proposed an algorithm which defined the upward and 
downward corns, and obtained the feasible subgraphs using 
corns' combination. However, this method can only get 
segmental results compared to the exhaustive algorithms. Then 
successive work by Chen [4] accelerated the algorithm by 
reducing the invalid patterns and considering their emergence 
frequencies. And Atasu [5] also proposed an enumeration 
algorithm which only resolved the maximum convex subgraphs. 

2) Instruction selection is to select a subset from the 
candidates to satisfy the system constraints. [6] first described a 
formal method based on integer linear programming (ILP) and 
maximize the chip performance by using a branch-and-bound 
algorithm. Similarly, Lee [7] also formulated the instruction 
selection problem with ILP and presented an effective heuristic 
algorithm. To reduce the huge space, many researchers 
proposed heuristic algorithms. In [8] Atasu resolved the 
problem by restricting the input and output constraints. 

In conclusion, the previous works have two limitations. 
First, the instruction identification did not consider the system 
constraints and many idle candidates were enumerated, which 
might reduce the efficiency. Second, the exponential search 
space was not reduced effectively. To settle the issue, we 
propose a methodology which ties the identification and 
selection processes together. 
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III. PROBLEM DEFINITION 

A. Preliminary Definitions 
To clearly explain the problem, we first present several 

preliminary definitions. 

Definition 1: G(V, E) is a directed acyclic graph (DAG), 
where V is the nodes which denote operations, and E is the arcs 
which represent the data dependencies. 

Here DAG will be used to represent the data flow graph 
(DFG). DFGs will be the initial input for the problem. Let G'(V', 
E') be a subgraph of G(V, E). Its indegree and outdegree will be 
represented as IN(G') and OUT(G'). The custom instructions 
are usually generated through combining primitive operations. 
Since the primitive operation is represented as a node in the 
DFG, the custom instruction will be mapped to a subgraph. 

Let G(V, E) be a DAG. For v V, if IN(v)>1, the node v is 
an upward node; if OUT(v)>1, then it is a downward node. For 
v V, if IN(v) 1 and OUT(v) 1, the node v is a SISO (single 
in single out) node; otherwise, it is a MIMO (multiple in 
multiple out) node. 

Definition 2: G'(V', E') is a subgraph of G(V, E). If the 
condition is satisfied, G' is convex; otherwise, it is nonconvex: 

1 2 3 1 2 3' ' ( , ) 'v V v V v Path v v v V� � �� � �� � � �   (1) 

Fig. 1 presents two different subgraphs. Here the subgraphs 
are surrounded by the broken lines. The subgraph (a) is convex 
but (b) is not, because in (b) the node E is on the path from B to 
F, however, it is not included in the subgraph (b). 

B. Problem Formulation 
The instruction-set extension problem can be described as: 

given an application program which has a set of hot spots 
consuming much computing time, customize an extensible 
instruction set under multiple constraints so that the execution 
time of those hot spots can be minimized. 

To resolve this problem, it is extracted based on the DFG. 
First, the program will be converted into the DFG, and each 
instruction in the assembler is mapped to the node in the DFG. 
Second, the candidate feasible subgraphs will be enumerated. 
Finally, the custom instructions will be selected out to 
minimize the execution time. 

The feasible subgraph must satisfy three conditions. First, 
its indegree and outdegree cannot exceed the maximum value. 
For a processor, the register file has decided the operand 
number, so the indegree and outdegree of the feasible patterns 

should also satisfy this constraint. Second, the feasible 
subgraph must be convex. If the candidate subgraph is 
nonconvex, there will be a data dependency loop. This means 
that the hardware (custom instruction) will have data transfer 
relations with the software, which is not feasible. Third, the 
capability of candidate patterns cannot exceed the value Zm. 
The motivation is to restrict the cost of synthesized accelerators. 

Problem: Given a directed acyclic graph G(V, E), find out 
a set of feasible subgraphs {G'} which satisfy the following 
conditions simultaneously, so that the total execution time T 
can be minimized: 

� IN(G')  inmax and OUT(G')  outmax; 

� G' is convex; 

� Path(G') Zm. 

IV. METHODOLOGY 
This section will present an overview of the proposed 

method. The whole flow is presented by Fig.2. It includes three 
main steps: preprocessing, graph exploration and candidate 
optimization. To present a clear explanation, Fig. 3 presents a 
simple demo for this workflow. Then we will present the 
motivations for each subprocess. 

The motivation of the preprocessing is to explore the 
instruction-level parallelism. Its main task is to allocate the 
operations into a set of limited computing elements, and then 
schedule the instructions to reduce the total running cycles. 
This step will provide the initial order as the input of the 
following steps. For example, we assumed that there are one 
adder and one multiplier. So if we use the first order of Fig.3(1), 
the multiplier can only deal with one multiplication each time. 
To release the parallelism, the order is scheduled as shown in 
Fig. 3(2), and then the multiplier and adder elements can run 
simultaneously. 

To extract the candidate subgraphs, a strategy based on the 
graph exploration will be proposed. A priority for each node 
will be defined, and then the subgraph grows via combining the 
neighbor nodes from high priority to low priority. This strategy 
is named as seed-growth. To reduce the search space, an 
intelligent guide function will be presented to decide which 
direction to grow. After the graph exploration, we will get a set 
of feasible candidates, as shown in Fig. 3(3). However, those 
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Fig. 1.  Examples for the convex and non-convex subgraphs. 
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Fig. 2.  The proposed method based on DFG exploration. 
 

56
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore.  Restrictions apply. 



candidates may intersect. Therefore, to reduce the total cost, 
those candidates must be optimized. 

The candidate optimization focuses on graph splitting, as 
shown in Fig. 3(4)(5). After the graph exploration, the 
generated candidates may have functional overlap. For 
example, there are three candidates: mul_add, add_add, and 
add_mul_add. However, each node cannot be represented by 
more instructions, so a splitting process is needed. 

V. DATA FLOW GRAPH EXPLORATION 

A. Preliminary 
Definition 3: Let G'(V', E') be a subgraph. P is the critical 

path of G', and u and v are its source and sink. If |P|= Zm, this 
path cannot be lengthened more. Then u is called as a stopin, 
and v is a stopout: 

in outu stop v stop� �                             (2) 

Here stopin and stopout will guarantee Path(G') Zm. 

Definition 4: Let G(V, E) be a DAG. For each node v V, 
its priority value will be: 

( ) ( ) ( ) ( ) ( )Priority v IN v OUT v IN v OUT v� � � 	    (3) 

The node with higher degree is more complicated than the 
one with lower degrees. In this definition, the third item is used 
to reduce the priority of the nodes which have no incoming or 
outgoing arcs. For example in Fig. 4, if the node has higher 
in/out degree, the value of the priority will be higher: 
priority(op5)>priority(op4); if the node is near to the boundary, 
its priority may be lower: priority(op4)>priority(op2). 

B. Strategy 
The strategy is to select a node as the seed and then grow 

through combining its neighboring nodes. However, which 
direction to combine is the best choice, and how to ensure that 

the generated subgraphs satisfy the constraints proposed in 
Section III.B? This will be the key. 

Capability - The capability constraint can limit the size of 
generated subgraphs. Since it is related with the longest path, 
we will use the definition of stopin and stopout. 

Lemma 1: Let G(V, E) be a DAG, and G'(V', E') be its 
subgraph. Assumed that , ' in outu v V u stop v stop� � � � � , 
if , , 't r V t r V� � 
 , we can have: 

� If t Father(u), t cannot be combined with G'; 

� If r Son(v), r cannot be combined into G'. 

Proof: Based on Definition 1, there must be a longest path 
from u, and its length is Zm. Therefore, if we select a node t 
from the set Father(u) and combine it with G', the length of its 
critical path must be Zm+1. This case will violate the constraint 
of Zm, so t cannot be combined. Similarly, there must be a 
longest path end with v. If we contained the node v, the 
constraint of Path(G') Zm will be violated. 

Input/Output - The input and output degrees of the 
subgraphs are limited. They cannot exceed inmax and outmax. 
When combining subgraphs, how to deal with the subgraph 
which violates the maximum input/output constraint? 

Lemma 2: Let G'(V', E') be a subgraph of G(V, E). If 
|OUT(G')|>outmax, we should find a node 'u V u V� � 
 , which 
satisfies that u is the progeny of (|OUT(G')|-outmax+|OUT(u)|) 
outgoing nodes at least. If |IN(G')|>inmax, we should find a node 

'v V v V� � 
 , which satisfies that v is the ancestor of 
(|IN(G')|- inmax +|IN(v)|) incoming nodes at least. 

Proof: If |OUT(G')|>outmax, G' will be an infeasible 
subgraph. So to reduce the outgoing arcs, it is a good choice to 
find a progeny which can eliminate unwanted arcs via 
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Fig. 3.  An example for the work flow in Fig. 2. 
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Fig. 5.  The examples to explain Lemma 2. The subgraphs are surrounded
by the broken lines, and the node with shadow is the focus to be found. a)
|OUT| > outmax; b) |IN| > inmax. 
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combination. We assume that the outdegree of this progeny 
node u is u0. If combining u, we must also combine all the 
nodes on the paths from G' to u, and their outgoing arcs after 
combination will be temp. Therefore, we can get: 
|OUT(G^+)|=|OUT(G')|+|OUT(u)|+|temp|-|Result| outmax. Here 
Result means that how many paths in G' has the same progeny 
u. Since |temp| 0, it is obvious that |Result|  
|OUT(G')|+|OUT(u)|+|temp|-outmax |OUT(G')|+|OUT(u)|- 
outmax. Therefore, u is the progeny of (|OUT(G')|- outmax 
+|OUT(u)|) outgoing nodes at least. In addition, for the case of 
|IN(G')|> inmax, the proof is similar. As the example shown in 
Fig. 5, we assumed that inmax=outmax=1 for simplicity. In the 
first figure, we should explore downwards to reduce the 
outdegree and find a node u which is the progeny of 'P G� . 
This possible node may lead to a fewer output. If u is combined, 
the paths from G' to u must also be included. Also, if the 
current subgraph violates the input constraint as shown in the 
second figure, we will search upward and find a possible 
ancestor v. This will be a choice for the I/O constraints. 

Fig. 6 presents the implementation of Lemma 2. If the 
parameter of f is true, it will find the proper progeny node of 
the subgraph P; if f is false, it will find the ancestor node. 

Convex - Combining a node with the current subgraph may 
generate a nonconvex subgraph. So this step is to find out those 
hidden nodes and combine them to the current subgraph. 

Lemma 3: G'(V', E') is a convex subgraph of G(V, E). Given 
a node 'v V v V� � 
 , then after combining v with G', we can 
obtain a convex subgraph G+, which satisfies the conditions: 

� If the condition of ' ( )P G P Ancestor v� � � is satisfied, 
' { } ( ( ) ( ) ')G G v Progeny P Ancestor v G� � �� � � . 

� If the condition of ' ( )P G P Progeny v� � �  is satisfied, 
' { } ( ( ) ( ) ')G G v Ancestor P Progeny v G� � �� � � . 

Proof: Since the two conditions in Lemma 3 are similar, we 
only present the proof for the first item. Here we will use the 

definition of convex subgraph directly. According to Definition 
2, for each two nodes in the subgraph if all the paths between 
those two nodes are also contained in this subgraph, this 
subgraph will be convex. Since the final result include three 
items: G', {v}, and ( ) ( ) 'Progeny P Ancestor v G�� . It is 
assumed that ( ) ( ) 'mU Progeny P Ancestor v G� �� . If G' 
are not connected directly with u, the subgraph G' {v} will be 
discrete and insignificant. Also, G' and {v} are both convex. 
Therefore, the task is to verify the following sets: Um, {v} Um 
and G' Um. 1) Um:  we assume that for , ma b U� �  there should 

be a path Q between the nodes a and b. If mc Q c U� � 
 , 
( ) ( ( ) ')c Progeny P c Ancestor v G
 � 
 � . However, the 

start and the end of Q should satisfy the condition that 
, ( ) ( ) 'a b Progeny P Ancestor v G� �� , so each node on 

Q should also satisfy this condition. Then the conflict exists. 
This reduction to absurdity just proves that Um is convex. 2) {v}

Um: for each node x Um, it must be the ancestor of v. So 
this path must be contained in {v} Um, and this subgraph is 
convex. 3) G' Um: since each node in Um is the progeny of P, 
all the paths between each two nodes in P Um are also 
contained in this domain; for another part, we have the relation 
( ' ) mG P U� �� , so the set (G'-P) will be not considered. 
Therefore, it can be proved that G' Um is convex. 4) G' {v}

Um: based on the analysis above, we can only prove that all 
paths between the node v and 'y G� �  are also in this domain. 
Since the path from v to G' must pass the node mz U� , and the 
subpath v-z and z-G' must be contained in the domain, so the 
total path should also be contained. To explain it clearly, Fig. 7 
presents two examples. In the first figure, G'={op4, op5, op7, 
op3}, P={op3}, v=op9 and Um={op6, op8}; in the second 
figure, G'={op2, op3, op7, op9}, P={op2, op3}, v=op4 and 
Um={op5, op6, op8}. 

Latency - When combining the neighbor nodes, there are 
many directions to grow, which one is the best choice? The 
answer is the one which can bring the most performance 
improvements. 

Lemma 4: Given a DAG G(V, E) and its critical path P, 
combining the nodes on P could obtain higher performance 
improvements than others. 

Lemma 5: Assumed that A and B are two connected node, 
and their latencies are represented as LA and LB. Here LA LB. 
Then the subgraph AB is generated via combining A and B, and 
its latency is: LAB=LA+LB/k (k 1). When Zm 1, k . 

 
Fig. 6.  Lemma 2 implementation. P is the subgraph of G. 
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Fig. 7.  How to guarantee that the combined graph is convex. 
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Proof: Each custom instruction will be implemented as a 
special hardware, so the latencies are related with the detailed 
implementation of the hardware. It is hard to propose a 
formulation for their latencies, so this lemma presents an 
approximate evaluation formula. Because the processor runs 
the two instructions A and B in sequence, it will be slower than 
the hardware implementation, i.e. LAB LA+LB. For the 
operation A, it adds another operation B, so it is not likely to 
reduce its latency than the original value, i.e. LAB LA. 
Therefore, LA LAB LA+LB, and also LAB=LA+LB/k (k 1). For 
simplicity, it is assumed that during the hardware 
implementation we can use any kinds of optimization method, 
such as parallelism and pipelining. Then the operation B can be 
fused into A completely, i.e. LAB LA. However, LAB LA is only 
available when the Zm is small enough. If Zm , the Lsubgraph 
will not be equal to its member with the maximum latency. 

Based on the two lemmas above we propose a guide 
function Fun, which decides the best direction to combine with 
the seed node: 

( )( )
( ) 1

latency vFun v
dis v
�

�
�

                          (4) 

Here latency(v) means the latency reduction after 
combining the operation v, and dis(v) is the distance from the 
critical path. If the value of latency(v) is bigger and dis(v) is 
smaller, the probability that v is combined with the current 
node will be higher. In this equation the item of dis(v)+1 is to 
prevent the case that the node v is just on the critical path, i.e. 
dis(v)=0. Therefore, when exploring candidate subgraphs we 
will use Eq.(4) to decide the best combination direction. If 
Fun(v) is bigger, its probability to be combined will be higher. 

C. MIMO Node Combination 
The strategy is to select a node as the seed first, and then 

grow it through combing the neighbor nodes. However, which 

node should be the seed node, and which node has the highest 
priority to being the seed? As mentioned in Section III.A, the 
nodes can be divided into two types: MIMO and SISO. The 
case of SISO is easier due to the single data relationship. So we 
will deal with the MIMO nodes in detail. 

Fig.8 and Fig.9 present the algorithms of the MIMO node 
combination. The function “MIMO_d” is used to select the 
seed node, and “Direction” is used to combine the neighbor 
nodes with the seed. From Fig. 9 we can see that the choice of 
seed nodes is scheduled from high priority to low priority, so 
we will deal with the node with higher indegree and outdegree 
first. The strategy of Fig. 8 is to scan the neighbor nodes stage 
by stage, and verify whether it can bring an efficient 
performance improvement after combining. If the generated 
subgraph violates the constraints, the corresponding lemmas 
proposed in Section V.B will be used. 

We will compare the search space of the proposed 
algorithm with the previous exhaustive enumeration method. 
For the previous exhaustive algorithm, its search space is O(2n), 
where n is node number of the graph. To generate a subgraph 
there are two choices for each node, so its search space is 2n. 
Furthermore, there are 2n subgraphs in all, so the total search 
space is: 2n×2n=22n. For our proposed algorithm, we assume 
that there are (m-1) neighbor nodes for each seed node; 
therefore, to generate a subgraph it needs a search space of 2m-1. 
Here we assume that S(n) is the search space for the graph with 
n nodes. So based on the features of the proposed algorithm, 
we can get the relation: 

1

0 1
( )

( ) 2 1 1m

if n
S n

S n m if m n�

��
� �

� � � � ��
     (5) 

Here the value of m is related with Zm. If Zm is higher, m 
will be bigger. Therefore, we can analyze two extreme cases: 
m=1 and m=n-1. When m=n-1, the final result is 2n-2; when 
m=1, S(n)=S(n-1)+1=S(n-2)+2=…=S(1)+(n-2)=n-2. From the 
two extreme cases, we can see that the proposed algorithm 
must have a lower search space than the previous algorithms. 

D. Candidate Optimization 
After the data flow graph exploration, we have obtained a 

set of feasible candidates. However, this is not the final result, 
because there may be two candidates with intersection. We 
have implemented a greedy method to split the candidates. The 
details will be omitted due to the paper length. 

 
Fig. 9.  The MIMO node combination. 
 

 
Fig. 8.  The combination direction selection. 
 

59
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore.  Restrictions apply. 



VI. EXPERIMENT 
To verify the feasibility of the proposed method, we have 

implemented it with C++ and done some tests on a v880 
machine running Sun Solaris. The front-end mainly used the 
benchmarks from MidiaBench [9]. Table I presents the details. 
The back-end used the simulator-based evaluation values. 
Firstly, the latency for each primitive instruction was simulated 
using Altera Quartus II. Those operations were implemented 
with VHDL and then simulated to get the running time, which 
will be used to evaluate the latencies of custom instructions. 

We will compare the proposed algorithm (referred to as 
“GA”) with the algorithm in [1] (referred to as “EX”) and [4] 
(referred to as “SP”). EX is an exhaustive algorithm, which will 
enumerate all the valid subgraphs. Therefore, it will consume 
many search space. We have implemented it based on the 
binary decision tree (BDT) model, and used a branch-and-
bound strategy to omit the patterns which violate the 
constraints. Since [1] and [4] did not consider the constraint of 
Zm, we added it in the implementation. SP is also an exhaustive 
algorithm, which identified the next node for inclusion to the 
current subgraph. So it is similar to GA. 

Table II presents the results in detail. The first column is the 
IDs of the benchmarks, and the following three columns 
present the inmax/outmax/Zm constraints. Here we compared four 
kinds of constraints: 2/1/2, 4/1/2, 4/2/2 and 4/2/3. Then the 
search spaces for the three algorithms are compared. Here the 
search space is the total scanned nodes to generate the current 
valid subgraph. Then the next two columns are the numbers of 
valid candidate subgraphs. EX and SP are both exhaustive 
algorithms, so their results are the same. GA considered the 
performance factor in the enumeration stage, and it will omit 
many valid candidates which bring less performance 
enhancement, so its result is less than EX and SP. Finally the 
last two columns present the improvements over EX and SP, 
which are the ratios between the search spaces. The function of 
EX and SP was to enumerate all valid patterns, and they did not 
consider any performance factors. However, GA considers the 
performance in the identification stage, so it can omit many 
candidates and reduce the search space. But the sequel is that 
GA will do more work than EX and SP, so it is not significant 
to compare their execution time directly. Instead, we will 
analyze their search space. From Table II we can see that for 
the same benchmark and constraints, the proposed algorithm 
will use much less search space than the previous algorithms. 

VII. CONCLUSION 
This paper presents an instruction level partition method 

based on the DFG exploration. To reduce the huge search space, 

this method combined both the instruction identification and 
the selection. The experiments indicated that the performance 
is comparable to the exhaustive algorithms. 
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