
Instruction-level Hardware/Software Partition through
DFG Exploration

Kang Zhao, Jinian Bian
Dept. of Computer Science and Technology, Tsinghua University, Beijing, P.R. China

zhao-k04@mails.tsinghua.edu.cn; bianjn@tsinghua.edu.cn

Abstract— To reduce the huge search space when customizing
instruction-level accelerators for the application specific
instruction-set processor (ASIP), this paper proposes an
automated instruction-level hardware/software partition method
based on the data flow graph exploration. This method integrates
the instruction identification and selection using an iterative
improvement strategy. The search space is reduced via
considering the performance factors during the identification.

Keywords-Hardware/software partition, ASIP, DFG exploration

I. INTRODUCTION
The application specific instruction-set processor (ASIP)

can increase the processor performance through the specific
instruction sets customization, which can be viewed as the
special hardware in the processor [1]. Except for the instruction
set architecture (ISA), ASIP also allows designers to customize
the underlying microarchitecture for a specific domain.

To improve the efficiency, application programs are usually
implemented through a hardware/software partition: if a
complex operation is used frequently in the program, custom
instructions will be extended to speedup the computation; if not,
it will be compiled with the primitive instructions. In this
process, the instruction set extension (ISE) plays a very
important role. The basic strategy is to combine the primitive
operations in the data flow graph (DFG). To implement it, two
problems should be solved: 1) instruction identification, which
enumerates all feasible subgraphs from the program's DFG; 2)
instruction selection, which selects an optimal instruction set
under various constraints [2]. In the traditional flow, candidate
instructions are first enumerated via the identification process,
and then the instruction subset which satisfies the performance
constraints will be selected via the selection process. In this
flow the identification guarantees the architectural constraints,
and the selection guarantees the system constraints.

However, there are some limitations. The flow is divided
into two processes, which may bring much redundant work.
For example, the first process does not consider the
performance constraints; instead, it only considers the
architecture constraints. After a full enumeration, the second
process must deal with huge quantities of candidates. If the
system constraints can be considered in the identification, there
will be fewer redundant candidates. Furthermore, the search
space is exponential (2n) and it is a serious problem for a full
identification. If we insert the system constraints into the
identification process, it may be able to reduce the search space.

To settle this issue, this paper will propose a methodology
based on the graph exploration. How to enhance the efficiency
and reduce the search space are two focuses. Section II will
discuss the related work. In Section III, the problem will be
formulated. Section IV proposes a novel methodology and the
details are presented in Section V. Section VI will present the
experimental results. The conclusion is drawn in Section VII.

II. RELATED WORKS
The instruction-level partitioning includes two processes:

instruction identification and instruction selection.

1) The motivation of the identification is to enumerate all
feasible subgraphs. It has no relation with the system
performance; instead, it focuses on the architectural constraints.
Atasu first proposed a breadth search method in [3], which
used a full binary tree model. To reduce the search space, [3]
used a pruning strategy, which can avoid enumerating invalid
subgraphs. Then Pozzi [1] improved it by adding a pruning
criterion based on the input number constraints. The limitation
of this algorithm is that the search space was still exponential.
[2] proposed an algorithm which defined the upward and
downward corns, and obtained the feasible subgraphs using
corns' combination. However, this method can only get
segmental results compared to the exhaustive algorithms. Then
successive work by Chen [4] accelerated the algorithm by
reducing the invalid patterns and considering their emergence
frequencies. And Atasu [5] also proposed an enumeration
algorithm which only resolved the maximum convex subgraphs.

2) Instruction selection is to select a subset from the
candidates to satisfy the system constraints. [6] first described a
formal method based on integer linear programming (ILP) and
maximize the chip performance by using a branch-and-bound
algorithm. Similarly, Lee [7] also formulated the instruction
selection problem with ILP and presented an effective heuristic
algorithm. To reduce the huge space, many researchers
proposed heuristic algorithms. In [8] Atasu resolved the
problem by restricting the input and output constraints.

In conclusion, the previous works have two limitations.
First, the instruction identification did not consider the system
constraints and many idle candidates were enumerated, which
might reduce the efficiency. Second, the exponential search
space was not reduced effectively. To settle the issue, we
propose a methodology which ties the identification and
selection processes together.

This work was supported by National Natural Science Foundation of China under grant NSFC-90207017, NSFC- 90607001 and NSFC-60876030; National
Basic Research Program of China (973) under grant 2005CB321605; National Postdoctoral Sustentation Fund under grant 023250010.

Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design

978-1-4577-0387-4/11/$26.00 ©2011 IEEE
55

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

III. PROBLEM DEFINITION

A. Preliminary Definitions
To clearly explain the problem, we first present several

preliminary definitions.

Definition 1: G(V, E) is a directed acyclic graph (DAG),
where V is the nodes which denote operations, and E is the arcs
which represent the data dependencies.

Here DAG will be used to represent the data flow graph
(DFG). DFGs will be the initial input for the problem. Let G'(V',
E') be a subgraph of G(V, E). Its indegree and outdegree will be
represented as IN(G') and OUT(G'). The custom instructions
are usually generated through combining primitive operations.
Since the primitive operation is represented as a node in the
DFG, the custom instruction will be mapped to a subgraph.

Let G(V, E) be a DAG. For v V, if IN(v)>1, the node v is
an upward node; if OUT(v)>1, then it is a downward node. For
v V, if IN(v) 1 and OUT(v) 1, the node v is a SISO (single
in single out) node; otherwise, it is a MIMO (multiple in
multiple out) node.

Definition 2: G'(V', E') is a subgraph of G(V, E). If the
condition is satisfied, G' is convex; otherwise, it is nonconvex:

1 2 3 1 2 3' ' (,) 'v V v V v Path v v v V� � �� � �� � � � (1)

Fig. 1 presents two different subgraphs. Here the subgraphs
are surrounded by the broken lines. The subgraph (a) is convex
but (b) is not, because in (b) the node E is on the path from B to
F, however, it is not included in the subgraph (b).

B. Problem Formulation
The instruction-set extension problem can be described as:

given an application program which has a set of hot spots
consuming much computing time, customize an extensible
instruction set under multiple constraints so that the execution
time of those hot spots can be minimized.

To resolve this problem, it is extracted based on the DFG.
First, the program will be converted into the DFG, and each
instruction in the assembler is mapped to the node in the DFG.
Second, the candidate feasible subgraphs will be enumerated.
Finally, the custom instructions will be selected out to
minimize the execution time.

The feasible subgraph must satisfy three conditions. First,
its indegree and outdegree cannot exceed the maximum value.
For a processor, the register file has decided the operand
number, so the indegree and outdegree of the feasible patterns

should also satisfy this constraint. Second, the feasible
subgraph must be convex. If the candidate subgraph is
nonconvex, there will be a data dependency loop. This means
that the hardware (custom instruction) will have data transfer
relations with the software, which is not feasible. Third, the
capability of candidate patterns cannot exceed the value Zm.
The motivation is to restrict the cost of synthesized accelerators.

Problem: Given a directed acyclic graph G(V, E), find out
a set of feasible subgraphs {G'} which satisfy the following
conditions simultaneously, so that the total execution time T
can be minimized:

� IN(G') inmax and OUT(G') outmax;

� G' is convex;

� Path(G') Zm.

IV. METHODOLOGY
This section will present an overview of the proposed

method. The whole flow is presented by Fig.2. It includes three
main steps: preprocessing, graph exploration and candidate
optimization. To present a clear explanation, Fig. 3 presents a
simple demo for this workflow. Then we will present the
motivations for each subprocess.

The motivation of the preprocessing is to explore the
instruction-level parallelism. Its main task is to allocate the
operations into a set of limited computing elements, and then
schedule the instructions to reduce the total running cycles.
This step will provide the initial order as the input of the
following steps. For example, we assumed that there are one
adder and one multiplier. So if we use the first order of Fig.3(1),
the multiplier can only deal with one multiplication each time.
To release the parallelism, the order is scheduled as shown in
Fig. 3(2), and then the multiplier and adder elements can run
simultaneously.

To extract the candidate subgraphs, a strategy based on the
graph exploration will be proposed. A priority for each node
will be defined, and then the subgraph grows via combining the
neighbor nodes from high priority to low priority. This strategy
is named as seed-growth. To reduce the search space, an
intelligent guide function will be presented to decide which
direction to grow. After the graph exploration, we will get a set
of feasible candidates, as shown in Fig. 3(3). However, those

(b) non-convex sub-graph(a) convex sub-graph

A B

D

E

F G

C

A B

D

E

F G

C

Fig. 1. Examples for the convex and non-convex subgraphs.

Preprocessing

Graph exploration

Candidate optimization

Evaluator

Estimation results

Assembler

DFGC/C++ programs

Computing
module
library

Constraints

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

Fig. 2. The proposed method based on DFG exploration.

56
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

candidates may intersect. Therefore, to reduce the total cost,
those candidates must be optimized.

The candidate optimization focuses on graph splitting, as
shown in Fig. 3(4)(5). After the graph exploration, the
generated candidates may have functional overlap. For
example, there are three candidates: mul_add, add_add, and
add_mul_add. However, each node cannot be represented by
more instructions, so a splitting process is needed.

V. DATA FLOW GRAPH EXPLORATION

A. Preliminary
Definition 3: Let G'(V', E') be a subgraph. P is the critical

path of G', and u and v are its source and sink. If |P|= Zm, this
path cannot be lengthened more. Then u is called as a stopin,
and v is a stopout:

in outu stop v stop� � (2)

Here stopin and stopout will guarantee Path(G') Zm.

Definition 4: Let G(V, E) be a DAG. For each node v V,
its priority value will be:

() () () () ()Priority v IN v OUT v IN v OUT v� � � 	 (3)

The node with higher degree is more complicated than the
one with lower degrees. In this definition, the third item is used
to reduce the priority of the nodes which have no incoming or
outgoing arcs. For example in Fig. 4, if the node has higher
in/out degree, the value of the priority will be higher:
priority(op5)>priority(op4); if the node is near to the boundary,
its priority may be lower: priority(op4)>priority(op2).

B. Strategy
The strategy is to select a node as the seed and then grow

through combining its neighboring nodes. However, which
direction to combine is the best choice, and how to ensure that

the generated subgraphs satisfy the constraints proposed in
Section III.B? This will be the key.

Capability - The capability constraint can limit the size of
generated subgraphs. Since it is related with the longest path,
we will use the definition of stopin and stopout.

Lemma 1: Let G(V, E) be a DAG, and G'(V', E') be its
subgraph. Assumed that , ' in outu v V u stop v stop� � � � � ,
if , , 't r V t r V� �
 , we can have:

� If t Father(u), t cannot be combined with G';

� If r Son(v), r cannot be combined into G'.

Proof: Based on Definition 1, there must be a longest path
from u, and its length is Zm. Therefore, if we select a node t
from the set Father(u) and combine it with G', the length of its
critical path must be Zm+1. This case will violate the constraint
of Zm, so t cannot be combined. Similarly, there must be a
longest path end with v. If we contained the node v, the
constraint of Path(G') Zm will be violated.

Input/Output - The input and output degrees of the
subgraphs are limited. They cannot exceed inmax and outmax.
When combining subgraphs, how to deal with the subgraph
which violates the maximum input/output constraint?

Lemma 2: Let G'(V', E') be a subgraph of G(V, E). If
|OUT(G')|>outmax, we should find a node 'u V u V� �
 , which
satisfies that u is the progeny of (|OUT(G')|-outmax+|OUT(u)|)
outgoing nodes at least. If |IN(G')|>inmax, we should find a node

'v V v V� �
 , which satisfies that v is the ancestor of
(|IN(G')|- inmax +|IN(v)|) incoming nodes at least.

Proof: If |OUT(G')|>outmax, G' will be an infeasible
subgraph. So to reduce the outgoing arcs, it is a good choice to
find a progeny which can eliminate unwanted arcs via

addmul

add

add

mul

mul

(2) (3)

(4)(5)(6)

mul+add

mul+add

mul+add

(1)

add

mul

add

add

mulmul

addmul

add

add

mul

mul

addmul

add

add

mul

mul

addmul

add

add

mul

mul

Fig. 3. An example for the work flow in Fig. 2.

op3op2

op5

op6

op4

op1

2=0+2+0*2 1=0+1+0*1

5=2+1+2*13=1+1+1*1

0=0+0+0*0
2=2+0+2*0

Priority: op5>op4>op6=op2>op3>op1

Fig. 4. An example to show the priority for each node.

u

G'

u

G+

G'

v v

G+

(a) (b)

Fig. 5. The examples to explain Lemma 2. The subgraphs are surrounded
by the broken lines, and the node with shadow is the focus to be found. a)
|OUT| > outmax; b) |IN| > inmax.

57
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

combination. We assume that the outdegree of this progeny
node u is u0. If combining u, we must also combine all the
nodes on the paths from G' to u, and their outgoing arcs after
combination will be temp. Therefore, we can get:
|OUT(G^+)|=|OUT(G')|+|OUT(u)|+|temp|-|Result| outmax. Here
Result means that how many paths in G' has the same progeny
u. Since |temp| 0, it is obvious that |Result|
|OUT(G')|+|OUT(u)|+|temp|-outmax |OUT(G')|+|OUT(u)|-
outmax. Therefore, u is the progeny of (|OUT(G')|- outmax
+|OUT(u)|) outgoing nodes at least. In addition, for the case of
|IN(G')|> inmax, the proof is similar. As the example shown in
Fig. 5, we assumed that inmax=outmax=1 for simplicity. In the
first figure, we should explore downwards to reduce the
outdegree and find a node u which is the progeny of 'P G� .
This possible node may lead to a fewer output. If u is combined,
the paths from G' to u must also be included. Also, if the
current subgraph violates the input constraint as shown in the
second figure, we will search upward and find a possible
ancestor v. This will be a choice for the I/O constraints.

Fig. 6 presents the implementation of Lemma 2. If the
parameter of f is true, it will find the proper progeny node of
the subgraph P; if f is false, it will find the ancestor node.

Convex - Combining a node with the current subgraph may
generate a nonconvex subgraph. So this step is to find out those
hidden nodes and combine them to the current subgraph.

Lemma 3: G'(V', E') is a convex subgraph of G(V, E). Given
a node 'v V v V� �
 , then after combining v with G', we can
obtain a convex subgraph G+, which satisfies the conditions:

� If the condition of ' ()P G P Ancestor v� � � is satisfied,
' { } (() () ')G G v Progeny P Ancestor v G� � �� � � .

� If the condition of ' ()P G P Progeny v� � � is satisfied,
' { } (() () ')G G v Ancestor P Progeny v G� � �� � � .

Proof: Since the two conditions in Lemma 3 are similar, we
only present the proof for the first item. Here we will use the

definition of convex subgraph directly. According to Definition
2, for each two nodes in the subgraph if all the paths between
those two nodes are also contained in this subgraph, this
subgraph will be convex. Since the final result include three
items: G', {v}, and () () 'Progeny P Ancestor v G�� . It is
assumed that () () 'mU Progeny P Ancestor v G� �� . If G'
are not connected directly with u, the subgraph G' {v} will be
discrete and insignificant. Also, G' and {v} are both convex.
Therefore, the task is to verify the following sets: Um, {v} Um
and G' Um. 1) Um: we assume that for , ma b U� � there should

be a path Q between the nodes a and b. If mc Q c U� �
 ,
() (() ')c Progeny P c Ancestor v G
 �
 � . However, the

start and the end of Q should satisfy the condition that
, () () 'a b Progeny P Ancestor v G� �� , so each node on

Q should also satisfy this condition. Then the conflict exists.
This reduction to absurdity just proves that Um is convex. 2) {v}

Um: for each node x Um, it must be the ancestor of v. So
this path must be contained in {v} Um, and this subgraph is
convex. 3) G' Um: since each node in Um is the progeny of P,
all the paths between each two nodes in P Um are also
contained in this domain; for another part, we have the relation
(') mG P U� �� , so the set (G'-P) will be not considered.
Therefore, it can be proved that G' Um is convex. 4) G' {v}

Um: based on the analysis above, we can only prove that all
paths between the node v and 'y G� � are also in this domain.
Since the path from v to G' must pass the node mz U� , and the
subpath v-z and z-G' must be contained in the domain, so the
total path should also be contained. To explain it clearly, Fig. 7
presents two examples. In the first figure, G'={op4, op5, op7,
op3}, P={op3}, v=op9 and Um={op6, op8}; in the second
figure, G'={op2, op3, op7, op9}, P={op2, op3}, v=op4 and
Um={op5, op6, op8}.

Latency - When combining the neighbor nodes, there are
many directions to grow, which one is the best choice? The
answer is the one which can bring the most performance
improvements.

Lemma 4: Given a DAG G(V, E) and its critical path P,
combining the nodes on P could obtain higher performance
improvements than others.

Lemma 5: Assumed that A and B are two connected node,
and their latencies are represented as LA and LB. Here LA LB.
Then the subgraph AB is generated via combining A and B, and
its latency is: LAB=LA+LB/k (k 1). When Zm 1, k .

Fig. 6. Lemma 2 implementation. P is the subgraph of G.

65

8

9

7

4

2

3

1 65

8

9

7

4

2

3

1 65

8

9

7

4

2

3

1 65

8

9

7

4

2

3

1

(a) (b)

Fig. 7. How to guarantee that the combined graph is convex.

58
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

Proof: Each custom instruction will be implemented as a
special hardware, so the latencies are related with the detailed
implementation of the hardware. It is hard to propose a
formulation for their latencies, so this lemma presents an
approximate evaluation formula. Because the processor runs
the two instructions A and B in sequence, it will be slower than
the hardware implementation, i.e. LAB LA+LB. For the
operation A, it adds another operation B, so it is not likely to
reduce its latency than the original value, i.e. LAB LA.
Therefore, LA LAB LA+LB, and also LAB=LA+LB/k (k 1). For
simplicity, it is assumed that during the hardware
implementation we can use any kinds of optimization method,
such as parallelism and pipelining. Then the operation B can be
fused into A completely, i.e. LAB LA. However, LAB LA is only
available when the Zm is small enough. If Zm , the Lsubgraph
will not be equal to its member with the maximum latency.

Based on the two lemmas above we propose a guide
function Fun, which decides the best direction to combine with
the seed node:

()()
() 1

latency vFun v
dis v
�

�
�

 (4)

Here latency(v) means the latency reduction after
combining the operation v, and dis(v) is the distance from the
critical path. If the value of latency(v) is bigger and dis(v) is
smaller, the probability that v is combined with the current
node will be higher. In this equation the item of dis(v)+1 is to
prevent the case that the node v is just on the critical path, i.e.
dis(v)=0. Therefore, when exploring candidate subgraphs we
will use Eq.(4) to decide the best combination direction. If
Fun(v) is bigger, its probability to be combined will be higher.

C. MIMO Node Combination
The strategy is to select a node as the seed first, and then

grow it through combing the neighbor nodes. However, which

node should be the seed node, and which node has the highest
priority to being the seed? As mentioned in Section III.A, the
nodes can be divided into two types: MIMO and SISO. The
case of SISO is easier due to the single data relationship. So we
will deal with the MIMO nodes in detail.

Fig.8 and Fig.9 present the algorithms of the MIMO node
combination. The function “MIMO_d” is used to select the
seed node, and “Direction” is used to combine the neighbor
nodes with the seed. From Fig. 9 we can see that the choice of
seed nodes is scheduled from high priority to low priority, so
we will deal with the node with higher indegree and outdegree
first. The strategy of Fig. 8 is to scan the neighbor nodes stage
by stage, and verify whether it can bring an efficient
performance improvement after combining. If the generated
subgraph violates the constraints, the corresponding lemmas
proposed in Section V.B will be used.

We will compare the search space of the proposed
algorithm with the previous exhaustive enumeration method.
For the previous exhaustive algorithm, its search space is O(2n),
where n is node number of the graph. To generate a subgraph
there are two choices for each node, so its search space is 2n.
Furthermore, there are 2n subgraphs in all, so the total search
space is: 2n×2n=22n. For our proposed algorithm, we assume
that there are (m-1) neighbor nodes for each seed node;
therefore, to generate a subgraph it needs a search space of 2m-1.
Here we assume that S(n) is the search space for the graph with
n nodes. So based on the features of the proposed algorithm,
we can get the relation:

1

0 1
()

() 2 1 1m

if n
S n

S n m if m n�

��
� �

� � � � ��
 (5)

Here the value of m is related with Zm. If Zm is higher, m
will be bigger. Therefore, we can analyze two extreme cases:
m=1 and m=n-1. When m=n-1, the final result is 2n-2; when
m=1, S(n)=S(n-1)+1=S(n-2)+2=…=S(1)+(n-2)=n-2. From the
two extreme cases, we can see that the proposed algorithm
must have a lower search space than the previous algorithms.

D. Candidate Optimization
After the data flow graph exploration, we have obtained a

set of feasible candidates. However, this is not the final result,
because there may be two candidates with intersection. We
have implemented a greedy method to split the candidates. The
details will be omitted due to the paper length.

Fig. 9. The MIMO node combination.

Fig. 8. The combination direction selection.

59
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

VI. EXPERIMENT
To verify the feasibility of the proposed method, we have

implemented it with C++ and done some tests on a v880
machine running Sun Solaris. The front-end mainly used the
benchmarks from MidiaBench [9]. Table I presents the details.
The back-end used the simulator-based evaluation values.
Firstly, the latency for each primitive instruction was simulated
using Altera Quartus II. Those operations were implemented
with VHDL and then simulated to get the running time, which
will be used to evaluate the latencies of custom instructions.

We will compare the proposed algorithm (referred to as
“GA”) with the algorithm in [1] (referred to as “EX”) and [4]
(referred to as “SP”). EX is an exhaustive algorithm, which will
enumerate all the valid subgraphs. Therefore, it will consume
many search space. We have implemented it based on the
binary decision tree (BDT) model, and used a branch-and-
bound strategy to omit the patterns which violate the
constraints. Since [1] and [4] did not consider the constraint of
Zm, we added it in the implementation. SP is also an exhaustive
algorithm, which identified the next node for inclusion to the
current subgraph. So it is similar to GA.

Table II presents the results in detail. The first column is the
IDs of the benchmarks, and the following three columns
present the inmax/outmax/Zm constraints. Here we compared four
kinds of constraints: 2/1/2, 4/1/2, 4/2/2 and 4/2/3. Then the
search spaces for the three algorithms are compared. Here the
search space is the total scanned nodes to generate the current
valid subgraph. Then the next two columns are the numbers of
valid candidate subgraphs. EX and SP are both exhaustive
algorithms, so their results are the same. GA considered the
performance factor in the enumeration stage, and it will omit
many valid candidates which bring less performance
enhancement, so its result is less than EX and SP. Finally the
last two columns present the improvements over EX and SP,
which are the ratios between the search spaces. The function of
EX and SP was to enumerate all valid patterns, and they did not
consider any performance factors. However, GA considers the
performance in the identification stage, so it can omit many
candidates and reduce the search space. But the sequel is that
GA will do more work than EX and SP, so it is not significant
to compare their execution time directly. Instead, we will
analyze their search space. From Table II we can see that for
the same benchmark and constraints, the proposed algorithm
will use much less search space than the previous algorithms.

VII. CONCLUSION
This paper presents an instruction level partition method

based on the DFG exploration. To reduce the huge search space,

this method combined both the instruction identification and
the selection. The experiments indicated that the performance
is comparable to the exhaustive algorithms.

ACKNOWLEDGMENT
This work was supported by National Natural Science

Foundation of China under grant NSFC-90207017, NSFC-
90607001 and NSFC-60876030.

REFERENCES
[1] L. Pozzi, K. Atasu and P. Ienne. “Exact and approximate algorithms for

the extension of embedded processor instruction sets,” IEEE TCAD, vol.
25, No. 7, pp. 1209-29, July, 2006.

[2] Y. Pan, T. Mitra, “Scalable Custom Instructions Identification for
Instruction-Set Extensible Processors”, Proc. conference on Compiler,
Architectures and Synthesis for embedded systems, pp. 69–78, 2004.

[3] K. Atasu, L. Pozzi and P. Ienne. “Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Constraints,” Proc.
the Design Automation Conference (DAC), pp. 411–418, June 2003.

[4] X. Chen, and et al, “Fast Identification of Custom Instructions for
Extensible Processors”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 26, No. 2, pp. 359–368, 2007.

[5] K. Atasu, O. Mencer, and et al. “Fast Custom Instruction Identification
by Convex Subgraph Enumeration, ” Proc. Conference on Application-
specific Systems, Architectures and Processors, Leuven, pp. 1–6, 2008.

[6] A. Alomary, T. Nakata, and et al, “An ASIP instruction set optimization
algorithm with functional module sharing constraint”, IEEE/ACM
international conference on Computer Aided Design, Nov. 1993.

[7] J. Lee, K. Choi, N. Dutt, “Automatic Instruction Set Design Through
Efficient Instruction Encoding for Application-Specific Processors”. TR
02-23, August 2003.

[8] K. Atasu, G. Dundar and C.Ozturan. “An Integer Linear Programming
Approach for Identifying Instruction-Set Extensions”, Proc. International
CODES+ISSS, Jersey, September, 2005.

[9] http://express.ece.ucsb.edu/benchmark/

TABLE I. BENCHMARKS IN THE EXPERIMENTS
TABLE II. EXPERIMENTAL RESULTS UNDER DIFFERENT CONSTRAINTS.

60
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:44:02 UTC from IEEE Xplore. Restrictions apply.

