
HyMacs: Hybrid Memory Access Optimization based on
Custom-instruction Scheduling ∗

Kang Zhao, Jinian Bian, Sheqin Dong
EDA Lab, Dept. Computer Science & Technology

Tsinghua University, Beijing 100084, China
zhao-k04@mails.tsinghua.edu.cn
{bianjn,dongsq}@tsinghua.edu.cn

Yang Song and Satoshi Goto
School of Information, Production and Systems
Waseda University, Kitakyushu, 808-0135 Japan

syang@asagi.waseda.jp
goto@waseda.jp

ABSTRACT
This paper presents an efficient hybrid memory access opti-
mization system called HyMacs, which integrates the hard-
ware and software optimization strategies in the embedded
system design. First, HyMacs features a pre-configuration
stage which is equipped with a memory configuration algo-
rithm to satisfy area constraints. Then a custom instruction
generation process is integrated in the system via a seed-
growth algorithm under the intelligent guide functions. The
custom instruction benefits to the reduction of the whole
memory access latency and thus relieves the burden of sys-
tem through hardware mode. Finally, a data-dependency-
driven scheduling algorithm is also integrated to compress
the whole latency through access mode conversion. We have
tested the system on a set of commonly used benchmarks,
and compared the results with the previous memory ac-
cess system MACCESS-opt proposed in DAC’05. The ex-
perimental results indicate 20% enhancement obtained for
the total memory access latency reduction compared with
MACCESS-opt, where the custom instruction generation
and scheduling contribute about 15% and 5% respectively.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies;
C.3 [Special purpose and application-based systems]:
Real-time and embedded systems

General Terms
Algorithms, Design, Experimentation

Keywords
CAD algorithm, hardware/software co-design, ASIP

∗This work was supported in part by National Natural Sci-
ence Foundation of China under grant NSFC-90207017, and
NSFC-90067001; National Basic Research Program of China
(973) under grant 2005CB321605.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’08, May 4–6, 2008, Orlando, Florida, USA.
Copyright 2008 ACM 978-1-59593-999-9/08/05 ...$5.00.

1. INTRODUCTION
Memory issues often play a very important role in the

embedded system design, which impact significantly the em-
bedded system’s performance, power, and the cost of imple-
mentation [1]. To accelerate the memory access, the use of
efficient access mode is greatly encouraged to promote the
access bandwidth [2]. However, speed requirement is not
principal for all target application markets, instead, how to
get an efficient area becomes the main task. So the area-
speed tradeoff of the memory access must be explored.

To address this issue and compress the memory access la-
tency as much as possible, a system named as HyMacs is
proposed in this paper, which uses a hybrid memory access
optimization to accelerate the memory access. This strat-
egy is similar to the hardware/software co-design strategy.
Recently, many works have been done to optimize the mem-
ory access, and they can be classified to two types: software
optimization and hardware optimization. Here we will give
a brief introduction for compare.

In literature, much work has been done utilizing the soft-
ware optimization mode. Kim presented a typical algorithm
called MACCESS-opt in [3]. MACCESS-opt utilized the
efficient page access, and considered three techniques simul-
taneously: determination of memories, array mapping to
memories, and scheduling of memory access operations, so
that the use of DRAM page access mode was maximized.
The details of the page access will be presented in Section 2.
Kim improved this algorithm with a rescheduling technique
in the successive work [4]. The advantage of MACCESS-opt
is that it can achieve a maximum speedup by scheduling the
code under area/cost constraints. However, because soft-
ware optimization must be limited under the hardware con-
straints, this algorithm can only get about 15-25% reduction
on the whole latency compared to the random generation.
In this paper we will use it as the baseline algorithm for com-
parison purpose, and utilize a hardware/software co-design
strategy to settle this issue. Besides, Choi studied the prob-
lem of DRAM memory layout for storing non-array variables
to maximum the use of memory bandwidth [5]. To reduce
the access delay, Choi proposed an efficient memory layout
algorithm for the page access mode. Similarly, our focus in
this paper is on DRAM memory, which is the same with [5];
however, our emphasis is on the array variables, which is
different from Choi’s work.

The memory access optimization can also be achieved by
hardware mode. The strategy is adopting custom instruc-
tions to minimize the memory access latency based on the
application specific instruction-set processor (ASIP). ASIP

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1366110.1366133&domain=pdf&date_stamp=2008-05-04

(c) The source code for the

DAG example in (b)

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

3. read A[i] NR :NR

4. read C[i] NR read D[i] NR :NR

5. write B[i+1] NW :NW

6. write D[i] NW :NW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Area: 18.4894 mm2

Total latency: 41 cycles

Memory configuration:

op# delay

1. read A[i] NR read B[i] NR :NR

2. read C[i] NR read B[i] PR :NR

35. read A[i] NR :NR

 write B[i+1] PW :PW

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 31 cycles

Custom instruction generation:

op35op3 op5+ =
write B[i+1]read A[i] read A[i]

write B[i+1]

op# delay

1. read A[i] NR read B[i] NR :NR

35. read A[i] PR :PR

 write B[i+1] PW :PW

2. read C[i] NR read B[i] PR :NR

4. read C[i] PR read D[i] NR :NR

6. write D[i] PW :PW

8. read D[i+1] PR :PR

9. write C[i+1] PW :PW

Total latency: 28 cycles

Scheduling:

op1->op2->op35->op4->op6->op8->op9

op1->op35->op2->op4->op6->op8->op9

old:

new:

(d) Memory configuration for the

operation schedule in (c)

(e) Custom instruction generation under

the memory configuration in (d)

(f) Scheduling results based on the

custom instruction in (e)

(a) Memory module library (b) Example with the DAG

(directed acyclic graph) format

B

C D

A

op1: e = A[i] + B[i] ; read A[i], read B[i]

op2: f = B[i] - C[i] ; read B[i], read C[i]

op3: g = A[i] 3 ; read A[i]

op4: h = C[i] + D[i] ; read C[i], read D[i]

op5: B[i+1] = e g ; write B[i+1]

op6: D[i] = h ; write D[i]

op7: i = f h

op8: t = D[i+1] + 4 ; read D[i+1]

op9: C[i+1] = i + t ; write C[i+1]

write D[i]

read A[i]

read B[i]

read B[i]

read C[i]

read C[i]

read D[i]

read D[i+1]

write C[i+1]

op1

op3

op5

op2

op4

op7

op9

op8

op6

write B[i+1]

read A[i]

Memory

modules

Modules size

(bits * words)

Area

(mm2)

M1

M2

M3

M4

M5

M6

M7

16*1024

32*1024

16*2048

32*2048

16*4096

32*4096

16*8192

5.4154

10.8309

7.6586

15.3171

10.8308

21.6617

15.3171

Figure 1: Example to illustrate the motivation of memory configuration, custom instruction generation and
scheduling. It is assumed that the page read (PR), normal read (NR), page write (PW) and normal write
(NW) will use 2, 5, 3 and 8 clock cycles respectively. Those data are spurious only for analysis and compare.

is the processor designed for particular applications, which
provides a tradeoff between efficiency and flexibility, and
custom instruction in ASIP can be viewed as hardware for
special purposes to accelerate the computation [6]. In this
domain, Biswas described the problems resulted from local
memory operations after the instruction set extension (ISE)
in [7]. Since memory operations pose the challenge for ISE
approaches by limiting the size of resulting instructions, this
paper presented two kinds of memory elements into cus-
tom units, and proposed a genetic algorithm to exploit the
opportunities of introducing memory elements during ISE
generation. Then Dimond drew a conclusion and proposed
the methodology to optimize the memory access through
the specific instruction set customization [8]. Furthermore,
some commercial tools on ASIP have been presented which
can settle the issues related with memory access, such as the
Xtensa-core-based toolset from Tensilica Inc. [9].

Given an objective application, it is concluded that de-
sign methodologies provide two ways of either scheduling the
code or synthesize instructions to satisfy the requirements of
time/area tradeoff. However, each way has its own intrinsic
limitation and cannot obtain the maximum potential of the
latency reduction. For example, the software optimization
must be implemented under the hardware constraints; and
the precondition of the hardware optimization is the memory
allocation, which is implemented by software optimization.

The new system called HyMacs which is proposed in this
paper can settle this issue effectively, and it contains three
steps: memory configuration, custom instruction generation
and instruction scheduling. The experimental results prove
that considering a hybrid design strategy of software and

hardware can obtain a better improvement than considering
only one of them.

The rest of the paper is organized as follows. In Section 2,
the motivation of memory access optimization is given. And
in Section 3, the problem formulation is described. Then in
Section 4, the details of the proposed algorithms are given.
To verify the new system, the experimental result is shown
in Section 5. Finally, a conclusion is drawn in Section 6.

2. MOTIVATION
Firstly, this section presents the definitions of normal mode

access and page mode access in DRAMs, which is similar to
[4]. In normal mode, a row decoding stage is first used to
copy the entire row of words to the row buffer, and then
a column decoding stage is adopted similarly. Finally, a
precharging stage is performed to prepare the execution for
the next memory access operation. For page mode, however,
if the word to be accessed in the next operation has already
been in the same page that was retrieved just before, the
execution of row decoding is not needed. So the latency of
page mode is much shorter than the normal mode, and their
difference focuses on whether the utilizing array variables are
the same or not between neighbor operations. This paper
will use the memory module library shown in Fig. 1(a).

Therefore, under the memory area constraints, convert as
many as possible normal access mode to page access mode
is the key to reduce the whole access latency. In this paper,
we use three techniques to achieve this objective: memory
configuration, custom instruction generation and scheduling.
To explain it clearly, we will use the DAG example which is
illustrated in Fig. 1(b).

90

Table 1: Definitions for notations.
Notations Meaning
Arrays Set of array names in the program
M Set of memory module names
f Mapping from Arrays to M
S Scheduling of the instructions
weightmax The maximum weight of subgraphs
hier/hiermax hier represents the current

level in the hierarchical DAG;
hiermax is the maximum level

area(f), Areamax area(f) means the area under the
memory allocation f ; Areamax

is the area constraint
Weight(G′) Graph weight of G′

delay(v) Latency for the node v

1) Different memory allocation can result in different area
cost and different latencies; furthermore, memory allocation
is the essential conditions for other processes. So firstly the
memory configuration should be confirmed. As illustrated
in Fig. 1(d), array variables A and C are assigned into the
same memory module. So if A and C appear in the same
operation, they cannot be accessed in parallel. If we change
the results in Fig. 1(d) and put variables A and B into the
same module, both op1 and op4 will be accessed through two
NRs, and the total access latency will be longer. This is just
the motivation of finding the best memory configuration.

2) Custom instruction is the combination of multiple basic
operations, and it can be viewed as the hardware for special
purposes. How can it reduce the memory access latency?
For example shown in Fig. 1(e), when op3 is combined with
op5, the access mode for op5 will be converted from normal
write (NW) to page write (PW) compared with Fig. 1(d).
Besides, since op5 disappears and op6 will run after op4 di-
rectly, so the access mode of op6 should be changed from
NW to PW. Additionally, suppose that we combine op1 and
op3 together instead, and then the normal read operation
for op3 can be omitted. Therefore, we can see that the cus-
tom instruction generation not only can change the memory
access mode, but also can reduce the access count.

3) The reason to utilize the normal access mode is that the
previous operation uses different arrays. So we can make the
same arrays exist in the previous operation via scheduling.
For example illustrated by Fig. 1(f), when the position of
op2 and op35 is exchanged, the page read (PR) mode will
be changed to normal read because of the variable A[i] in
op35, and then the total latency is reduced. Therefore, it
is feasible to reduce the whole latency through scheduling
based on the custom instructions.

3. PROBLEM FORMULATION
To explain the formulation clearly, we first present several

preliminary definitions:

Definition 1. G(V, E) is a directed acyclic graph (DAG),
where V and E are the sets of nodes and edges. The weight
of G(V, E) is defined as the length of its longest path.

Since the custom instruction is synthesized by combining
basic operations, so if each basic operation is mapped to
a certain node in the DAG, then each custom instruction

(b) non-convex sub-graph(a) convex sub-graph

A B

D

E

F G

C

A B

D

E

F G

C

Figure 2: Convex and non-convex sub-graphs.

will be mapped to a feasible sub-graph in the DAG. The
graph weights of sub-graphs should be limited to a value
weightmax, because when the graph weight is larger, the
complexity of the customization algorithm will be higher.

Definition 2. G′(V ′, E′) is a sub-graph of G(V, E). For
∀v1, v2 ∈ V ′, if all the nodes on the paths between v1 and v2

are also contained in V ′, G′ will be convex, as shown in Fig.
2; Otherwise, G′ will be non-convex.

C programs must be implemented with a sequential order.
If a sub-graph in DAG is mapped to a custom instruction,
it must be convex. Because non-convex graph can result in
the non-automated execution for the instructions, and this
is not permitted in the program implementation.

Definition 3. Each custom instruction can be mapped
to a feasible sub-graph G′, which satisfies two conditions:
1) the number of incoming and outgoing arcs are limited,
because the ports of the register file is also limited. 2) G′

must be a convex sub-graph.

Following the three definitions above and the notations
defined in Table 1, the problem can be described as:

Problem: Given a DAG G(V, E) of high-level source code
with array access Arrays, DRAM module library M and
memory area constraint Areamax, then generate a scheme of
memory allocation f , custom instruction set and the schedul-
ing S, so that the total memory access latency delay(G) is
minimum not exceeding Areamax.

Finally, the formulation description is given as follows:

Min :

|V |hier=hiermax∑
i=1

delay(f
SG′i)

s.t. area(f : Arrays → M) ≤ Areamax

Weight(f
SG′i) ≤ weightmax

1 ≤ hier ≤ hiermax

Here {f
SG′i} means the set of sub-graphs under the memory

configuration and scheduling results. G′i is the ith sub-graph.

4. METHODOLOGY
To reduce the memory access latency while satisfying the

area constraints, we utilize the hardware/software (HW/SW)
co-design strategy and propose a new system called Hy-
Macs (hybrid memory access through custom-instruction-
based scheduling). This system includes three techniques:
memory configuration, custom instruction generation and
instruction scheduling.

91

A B C D
Area:26.148 mm2

Latency: 28 ns

Area:23.9048 mm2

Latency: 28 ns

Area:18.4894 mm2

Latency: 36 ns

Area:15.3171 mm2

Latency: 46 ns

Areamax=20.0

Initial memory configuration:

A: M1, B: M3, C: M1, D: M3

area: 26.1480 mm2

Figure 3: Example for the memory configuration.

4.1 Memory Configuration
Because the focus of custom instruction and scheduling

is to reduce the total latency of memory access, and the
memory allocation result is just the precondition of latency
calculation, so the motivation of this step is to satisfy the
memory area constraint first. The configuration algorithm is
the same with [3], so we only give a brief explanation for it.
Because the area for each memory module has been defined
in the Fig. 1(a), we can consider to combine each two arrays
together from low latency to high latency, as shown in Fig. 3.
Since the area cannot exceed the maximum value Areamax,
so the result near to the deadline will be selected, and the
final result indicates that variables A, C and D are assigned
to the same memory module.

4.2 Custom Instruction Generation
The motivation of this step is to reduce the total latency

via instruction customization, because custom instruction
has the effect to change the access mode and then reduce the
memory access latency. The basic strategy of the instruction
customization is to combine basic operations in the DAG,
i.e. sub-graph selection. However, for a DAG G with n
nodes, there will be 2n candidate sub-graphs. To reduce
this exponential search space, we will present the definitions
of seed node and two guide functions F1 and F2.

To avoid searching the useless candidates and reduce the
huge search space, we first select some seed nodes under the
guide function F1(distance, priority), and then grow from
them under the best direction which is decided by the guide
function F2(distance, reduction).

1) The variable distance denotes the space between the
current node and the longest path of the DAG. Because
combining multiple nodes on the longest path will compress
the access latency and improve the performance directly, if
the value of distance is smaller, the current node will hold
higher potential to be contained in the candidate sub-graph.

2) The parameter priority is defined as follows:

priority = in + out + in× out (1)

Where in and out represent the numbers of incoming and
outgoing arcs. In Eq.1, the third item is used to deal with
the situation that the value of either in or out is zero. When
the variable priority is bigger, the potential of selecting the
current node as the seed node is higher. The reason to select
the node with highest value of priority as seed node is that it
can reduce the total number of seed nodes, which is helpful
to reduce the complexity of the algorithm.

Custom Instruction(G, f , S)
/* G: graph, f : memory allocation, S: schedule order */
1. while(all nodes in G are visited)
2. Select node i with the maximum priority on the

longest path p;
3. set i as the current seed node;
4. Q = set of nodes connected with i;
5. for(each node j in Q){
6. combine node i and j as t;
7. if(t is convex and Weight(t) ≤ weightmax){
8. G′ = G− {i, j}+ {t};
9. 4L = delay(G, f, S)− delay(G′, f, S);
10. }endif
11. }endfor
12. select j in Q with the largest value of 4L;
13. Combine node i and j and update the graph G;
14. }endwhile
15. return G;

Figure 4: Custom instruction generation algorithm.

3) Suppose that variable reduction represents the quantity
of the latency reduction after the current node is combined
with the seed node. When the value of reduction is larger,
the potential of reducing the total latency will be more.

Following the discussion above, the two guide functions
F1 and F2 are defined in Eq.2. F1 is used to select the
seed node which is nearer the longest path and hold a high
priority; F2 is adopted to choose the node which should be
combined with the current seed node, and this node is near
to the longest path and can obtain a higher reduction for
the access latency. In Eq.2, the item of “distance+1” is to
prevent the situation that the value of distance is zero.

F1 =
distance + 1

priority
F2 =

reduction

distance + 1
(2)

The details of our algorithm are shown in Fig. 4. Its
main idea is to determine the seed node with the minimum
F1, and then select the node connected with the current seed
node with maximum F2. Finally the whole graph is updated
under the generation of new custom instructions.

For example, Fig. 5 shows the custom instruction process
in detail for the DAG in Fig. 1(b), which is under the results
of memory allocation in Fig. 1(d). From the leftmost to the
right, we can find that the longest path will be changed once
a new instruction appears, and the values of guide functions
F1 and F2 for each node are also changed synchronously.
In this process, we can notice that several candidates are
not feasible sub-graphs. As the example shown in Fig. 5(a),
when merging op6, op4 and op8, it will exceed the maximum
value of sub-graph weight which is assumed to be 2 in this
example; and in Fig. 5(b), when merging op7, op9 and op46,
a non-convex sub-graph will be generated and it is unfeasi-
ble. Therefore, the constraint of feasible sub-graphs is one
of the conditions to stop the iteration in the algorithm.

4.3 Instruction Scheduling
After custom instruction generation is finished, we will

schedule the order based on the specific instructions so that
maximum access modes can be changed from normal mode
to page mode. However, not all the positions of opera-
tions can be exchanged because of the data dependency con-

92

op1op3

op5

op2op4

op7

op9op8

op6

Seed: op6

Candidate reduction

{op6, op4} 5

{op6, op8} 0

{op6, op4, op8} S

 Result: {op6, op4}->op46

op1op3

op5

op2op46

op7

op9

op8

Seed: op7

Candidate reduction

{op7, op2} 0

{op7, op6, op4} 0

{op7, op2, op6, op4} -5

{op7, op9} 0

{op7, op9, op2} S

{op7, op9, op6, op4} N

{op7, op9, op6, op4, op8} S

op1op3

op5

op2op46

op7

op9

op8

Seed: op8

Candidate reduction

{op8, op6, op4} S

{op8, op9} 0

{op8, op9, op6, op4} S

op1op3

op5

op2op46

op7

op9

op8

Seed: op5

Candidate reduction

{op5, op1} 10

{op5, op3} 10

{op5, op1, op3} 15

Result: {op5, op3, op1}->op135

(a) seed=op6 (b) seed=op7 (c) seed=op8 (d) seed=op5

Figure 5: Example explaining for the seed-growth algorithm of custom instruction generation. Here uses the
DAG in Fig. 1(b). The thick lines denote the longest path, and the node filled with shadow is the seed node.
S: the sub-graph exceeding the maximum weight, which is 2 in this example; N : non-convex sub-graph.

(a) Priority enumeration for

each operation

op2op46

op7

op9

op8

op135

2=0+2+0*2 1=0+1+0*1

5=2+1+2*13=1+1+1*1

0=0+0+0*0
2=2+0+2*0

Priority: op7>op8>op46=op9>op2>op135

(b) Scheduling results following the priority order in (a). Each pair of arrows

represent the begin and end positions of the shift range for the current scheduling.

op7

op2->op46->op7->op8->op9->op135

op46->op2->op7->op8->op9->op135

op2->op46->op7->op8->op9->op135

op46->op2->op7->op8->op9->op135

op46->op2->op7->op8->op9->op135

op46->op2->op8->op7->op9->op135

op8

op46

op9

Scheduling Reduction

op46->op2->op7->op8->op9->op135

0

0

0

0

3

op2->op46->op7->op8->op135->op9

3

-2

op135->op2->op46->op7->op8->op9

op2->op135->op46->op7->op8->op9

op2->op46->op135->op7->op8->op9

op2->op46->op7->op135->op8->op9

op2->op46->op7->op8->op135->op9

op2->op46->op7->op8->op9->op135

op2->op46->op7->op8->op9->op135

op46->op2->op7->op8->op9->op135

op2

op135

Scheduling Reduction

3

0

3

3

-5

-5

-2

3

op135->op2->op46->op7->op8->op9Final result:

Initial scheduling:

Figure 6: Example explaining for the scheduling algorithm based on the custom instructions. Figure (a) is
the illustration for the priority computation, and (b) shows the scheduling process in detail based on the
priority order in (a). In (b) each pair of arrows represents the positions of the movement range, i.e. [begin,
end]. The hooks shown in (b) mean that the current scheduling will be selected.

straint. For example in Fig. 1(b), the nodes op1 and op5
cannot be exchanged because the variable e must be written
in op1 first, and then it can be read in op5.

The strategy for this scheduling process is to sort the in-
struction order first from high priority to low priority by the
rule with Eq.1, as shown in Fig. 6(a). Then each operation
v will be selected under this priority order and is moved
during the current scheduling to find the maximum latency
reduction. In this movement, the iteration is used to confirm
the position of the operation v. However, the move range
of v is limited in [begin, end], where begin stands for the
nearest operation which has an outgoing arc to v, and end
is the nearest operation which has an incoming arc from v.
For example as shown in Fig. 6(b), when the current node is
op7, then its move range is [op7, op8]. After the positions of
all instructions have been confirmed, this process will stop.

The details of the scheduling algorithm are shown in Fig. 7.
Compared to the scheduling algorithms in [3], our algorithm
compresses the exploration space through two techniques:
1) Instead of the random order, we utilized the order re-

lated with priority under the rule of Eq.1. When priority is
higher, the node will be on the middle part of one path, and
if the position of this node is confirmed first, the movement
range for other nodes on the same path will be reduced; 2)
Instead of moving operations during the whole scheduling,
we limit the range between begin and end, which considers
the data dependency constraint adequately.

5. EXPERIMENTAL RESULTS
We have implemented the HyMacs algorithms in C++

language, and have tested them by a set of benchmarks in
numerical recipes [10], which are the same with the bench-
marks in [3] only for compare. The basis processor core is
obtained from Tensilica [9], its speed is 319 MHz and it is
equipped with a RAM of 1G size. In the custom instruc-
tion generation, fusion type of instructions is mainly used
based on Xtensa core. Table 2 illustrates the experimen-
tal results on the test benchmarks, where the first column
shows the names of the benchmarks, the second one denotes

93

Table 2: Performance improvement results for the memory access latency (page size: 16)

HyMacs (weightmax=2) HyMacs (weightmax=3)Benchmark array/area MACCESS-opt
#instr. #imp. #sched. #imp. #instr. #imp. #sched. #imp.

FOURFS 6/21.5 150 122 18.67% 122 18.67% 90 40.00% 84 40.00%

SPLINE 4/17.5 69451 61902 10.87% 54353 21.74% 49824 28.26% 49824 28.26%

STOERM 4/17.5 44642 39198 12.19% 39198 12.19% 37020 17.07% 37020 17.07%

PZEXTR 6/28.5 143172 135972 5.03% 128412 10.31% 129888 9.28% 122508 14.43%

RATINT 4/4.25 284308 261563 8.02% 216074 24.00% 170585 39.99% 170585 39.99%

Average improvement � 10.96% 17.38% 26.92% 28.75%

Scheduling(G, f , S)
/* G: graph, f : memory allocation, S: schedule order */
1. for(each node i in G){
2. priorityi = ini + outi + ini × outi;
3. }endfor
4. P={operations in G from high priority to low};
5. for(each node j in the set P){
6. begin=position of node j’s predecessor in S and G;
7. end = position of node j’s successor in S and G;
8. move j in the range [begin, end];
9. S1={Speedup when j is moved in [begin, end]};
10. Select the largest element in the set S1;
11. S ⇐ S1;
12. }endfor
13. return S;

Figure 7: Scheduling algorithm on the instructions.

the array number and area results under the memory con-
figuration, and the third column presents the latency results
utilizing the previous system MACCESS-opt in [3] for com-
pare. Then the access latency results with the proposed
system HyMacs are presented under different constraints.
The page size is supposed to be 16. Column under “#instr”
gives the latency results after the custom instruction gener-
ation, and “#sched” gives the final results after scheduling
process based on custom instructions. Finally, “#imp” rep-
resents the improvements on the reduction of memory access
latency compared with the previous system MACCESS-opt.

From Table 2 we can find that when the maximum value
of subgraph weight increases, the improvements rise because
the number of custom instructions is raised. In conclusion,
HyMacs system can achieve about 20% improvements than
the system MACCESS-opt in [3], where custom instructions
and scheduling contribute about 15% and 5% respectively.
This can also be validated by the Fig. 8, which illustrates the
average improvements on the latency for each benchmark.
Here the first figure shows the case that weightmax = 2, and
the second figure shows the case that weightmax = 3.

6. CONCLUSION
In this paper, we propose a hybrid memory access sys-

tem to reduce the whole memory access latency which inte-
grates the custom instruction generation and scheduling al-
gorithms. By applying a hardware/software co-design strat-
egy, our hybrid system has obtained a significant improve-
ment on the access latency reduction than the previous sys-
tem which only considers the software optimization.

Fourfs Spline Stoerm Pzextr Ratint
0

20%

40%

60%

80%

100%

Different input benchmarks

L
a
te

n
c
y
 p

e
rc

e
n
ta

g
e

Percentage of the memory access latency when the maximum weight is 2

MACCESS-opt

HyMacs.#instr.

HyMacs.#sched.

Fourfs Spline Stoerm Pzextr Ratint
0

20%

40%

60%

80%

100%

Different input benchmarks

L
a
te

n
c
y
 p

e
rc

e
n
ta

g
e

Percentage of the memory access latency when the maximum weight is 3

MACCESS-opt

HyMacs.#instr.

HyMacs.#sched.

(a) (b)

Figure 8: Average speedup on the access latencies.

7. REFERENCES
[1] P. R. Panda, et al. “Data and memory optimization

techniques for embedded systems,” ACM Trans. Des.
Autom. Electr. Syst., vol. 6, no. 2, pp. 149-206, 2001.

[2] Betty Prince. “High Performance Memories, New
Architecture DRAMs and SRAMs Evolution and
Function,” West Sussex, U.K.: Wiley, 1996.

[3] J. Kim, T. Kim. “Memory access optimization through
combined code scheduling, memory allocation, and
array binding in embedded system design,” in Proc.
DAC’05, Anaheim, pp.105-110, 2005.

[4] T. Kim, J. Kim. “Integration of Code Scheduling,
Memory Allocation, and Array Binding for Memory
Access Optimization,” IEEE Trans. CAD, vol. 26,
no. 1, pp. 142-151, Jan. 2007.

[5] Y. Choi, et al. “Memory layout techniques for variables
utilizing efficient DRAM access modes,” IEEE Trans.
CAD, vol. 24, no. 2, pp. 278-287, Feb. 2005.

[6] M. K. Jain, M. Balakrishnan and A. Kumar. “ASIP
Design Methodologies: Survey and Issues,” in Proc.
VLSI Design, Bangalore, pp. 76-81, Jan. 2001.

[7] P. Biswas, V. Choudhary, et al. “Introduction of local
memory elements in instruction set extensions,” in
Proc. DAC’04, pp.729-734, 2004.

[8] R. Dimond, O. Mencer, et al. “Automating Processor
Customization: Optimised Memory Access and
Resource Sharing,” in Proc. DATE’06, pp.1-6, 2006.

[9] Tensilica Inc.: http://www.tensilica.com/

[10] W. H. Press, et al. “Numerical Recipes in C.” U.K:
Cambridge University press, 1992.

94

