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Abstract 
 

To enhance the computing ability of the multimedia 
processor, this paper presents an automated specific 
instruction customization methodology. Specially, this 
methodology features a profiling stage which is equipped 
with a sub-graph matching algorithm. Furthermore, to 
support the features of multimedia systems, three special 
structures are integrated, such as fusion instructions, 
parallel and pipelining. To evaluate this methodology, a 
case study on H.264 encoder is adopted, and a H.264-
JM8.0 system is built based on the Xtensa toolset from 
Tensilica Inc. We have verified it with a set of video 
benchmarks. The experimental results indicate that 67% 
enhancement can be obtained via specific instructions. 
 
1. Introduction 
 

Recently, the growing demand of multimedia has been 
leading to a development of embedded systems, which 
not only supports ever-increasing functionality, but also 
needs to be flexible enough [1]. The tradeoff between the 
efficiency and flexibility can be obtained through the use 
of application specific instruction-set processor (ASIP).  

For many multimedia systems, ASIP can bring better 
effects than the methods based on only hardware or only 
software. For example, H.264 is a new standard of video 
codec. To accelerate its computation, many methods have 
been proposed, including both hardware implementation 
[2] and software optimization [3]. However, in the aspects 
that need both efficiency and flexibility, ASIP will be a 
better choice. However, using ASIP techniques in H.264 
is still in its infancy. For example, Kim presented an ASIP 
approach for the H.264 system, which uses the combined 
instructions to enhance the performance [4].  

However, the methods above only use the configurable 
architectures to accelerate the ASIP, which is similar to 
the hardware implementation. Hence, the potential of is 
not thoroughly extracted. Because the kernel of ASIP is 
specific instructions, the customizable instruction set will 
be used to accelerate the multimedia system in this paper. 

Recently, many researches have been done on the 
specific instruction customization. In the literature [5], an 
algorithm based on a binary decision tree model was 
proposed. In addition, a similar approach was introduced 
by Yu [6], which reduces the exploration space of specific 
instruction customization by enumerating patterns based 
on the operations in corn structures. Furthermore, to solve 
the problem of instruction customization, Sun proposed a 
synthesis methodology [7] based on the Xtensa core [8]. 

However, the above techniques have two limitations: 
first, those methods focus on universal applications and 
cannot reflect the special requirements of multimedia 
applications; second, most techniques focus on a part of 
the whole customization process and specially do not 
present a methodology for the multimedia applications 
from the input programs to the final processor synthesis. 

To address this issue, a methodology which focuses on 
the specific instruction customization is proposed in this 
paper. To satisfy the special requirements of multimedia, 
special structures are considered. This methodology is 
built on the Xtensa LX2 core, which is a configurable 
processor. Finally, to verify the proposed methodology, a 
case study on the H.264 encoder is presented.  

The rest of the paper is organized as follows. In 
Section 2, the methodology of instruction customization 
is presented. Then in Section 3, a case study of the H.264 
is given. Finally, a conclusion is drawn in Section 4. 
 
2. Methodology 
 

This section first formulates the problem with a data 
flow graph (DFG) description, and then presents the flow 
of instruction customization methodology. Finally, the 
detailed explanations for this workflow are given. 

 
2.1. Problem Formulation 

 
The specific instructions should be extracted from the 

objective application. Therefore, we first extract the data 
dependency information from the application programs 
and formulate it with DFG. 
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Definition 1: G(V, E, T) is a DFG, where V represents 
the set of nodes which denotes the operations, and E is 
the set of arcs which stands for data dependency relations. 
T is the set of parameters for each node and it represents 
the execution time of each operation. 

Definition 2: For DFG G, the total execution time TG 
will be equal to the sum of parameters on the longest path. 

Because specific instruction is the combination of basic 
operations, in DFG it will be mapped to feasible sub-
graphs which satisfy several constraints. So this problem 
can be described as follows. 

Problem: Given a DFG G(V, E, T), find a set of 
feasible sub-graphs {Gi’}, so that TG is minimized. 
 
2.2. Design Flow 
 

To solve the problem mentioned above, the details of 
the methodology are presented. The input is the programs 
written with C/C++ language, and the final output is the 
synthesized processor, as shown in Figure 1. 

Since the operation is on instruction level, the C code 
is first compiled and converted to assembler (Step 1), and 
then the data dependency relations are extracted (Step 2). 
Based on the assembler and DFG, a profiling process is 
adopted to find the features of the objective application 
(Step 3). In this process, a sub-graph matching algorithm 
is used. Then the specific instructions can be customized 
based on the profiling results. In this process, three types 
of special structures are employed: fusion instruction, 
parallelism and pipelining. The three types of instructions 
can reflect the features of multimedia programs. 

After the specific instruction generation, the focus will 
be transferred to the method of inserting new instructions 
into the C code so that both the compiler and simulator 
can understand them. To settle this issue, an instruction 
language named TIE is used, which is defined in Xtensa 
and can be accepted by its compiler and simulator.  
 
2.3. Sub-graph matching algorithm in profiling 
 

The motivation of sub-graph matching is to find the 

operations which are used frequently. If the frequency is 
low, it will be unworthy to accelerate it via specific 
instructions with a cost enhancement. Each specific 
instruction is mapped to one sub-graph, so a sub-graph 
matching algorithm can be used to seek out the candidate 
specific instructions. As shown in Figure 2, the graph A 
and B both have the same operations “(&)|(>>)”, so this 
format will be synthesized to a specific instruction. 

However, the exploration space of this problem is 
huge. Assume the DFG G has n nodes, so the sub-graph 
number of graph G is 2n. Then the number of mapping 
between the two sets of sub-graphs will be: 

( )2

2

2 2 2 2
n

n

n n n n× × × =  

To speed up the exploration and reduce the exponential 
space, a tool called pattmatch is used, which is supplied 
by Pattlib software [9]. This toolkit utilizes a heuristics 
isomorphism algorithm with a complexity of O(nlogn) to 
compare different sub-graph patterns in DFG.  
 
2.4. Specific Instruction Generation Strategy 
 

Based on the profiling results, specific instructions will 
be customized. Three structures are used to achieve this 
object: fusion instruction, parallelism and pipelining. To 
explain them clearly, an example is shown in Figure 3(a). 

First, fusion instruction is used to merge multiple basic 
operations into one instruction. Since specific instruction 
is viewed as hardware for special purpose, the motivation 
of fusion instruction is similar to hardware acceleration. 
For the multimedia systems, many complicated operations 
are used frequently. So we can consider synthesizing the 
fusion instructions to accelerate the computation. An 
example is shown in Figure 3(b). The limitation is that it 
will increase the cost of the final synthesized processor. 

Second, the motivation of the parallelism process is to 
implement sets of operations simultaneously. In this 
process SIMD (Single Instruction Multiple Data) is used, 
which describes a set of operations where an identical 
computation is performed via a series of operands in 
parallel. In Figure 3(b), SIMD is used to unroll the loop 
in the C program. This feature can effectively reduce the 
cycles brought by the iterations. However, SIMD cannot 
extract the potential of parallelism when the complexity 
of each instruction is very high. 
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Figure 1. Workflow for the specific instruction automated customization
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Figure 2. Example explaining the sub-graph matching process 
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Third, a pipelining process is utilized to disassemble 
some specific instructions and run via pipelining. As 
shown in Figure 3(b), the speed is raised through SIMD 
instruction mua, however, there will be a high complexity 
for the units to implement this instruction. To reduce the 
complexity, we can divide it into two parts and run them 
via pipelining. So ada is released and the clock frequency 
is raised. Besides, due to the pipelining process on mul 
and ada instructions, the whole latency is reduced. 
 
3. Case Study of Intra Prediction in H.264 
 

To evaluate the proposed methodology, a case study 
on the intra prediction application of H.264 is presented.  
 
3.1. Experimental Setup 
 

To customize specific instructions, the experimental 
platform should satisfy three conditions: first, it should 
have an analyzer on C programs so that it can analyze 
which part of the code should be synthesized to specific 
instructions; second, there must be a configurable core 
which can be changed along with the generation of new 
instructions; third, both the compiler and simulator can 
identify the new instructions inserted in C programs. 

Tensilica’s Xtensa RB2006.0 toolset for Xtensa LX2 is 
chosen as the experimental platform, which just satisfies 
the three conditions above. Its compiler is the subset of 
gcc, and Xtensa integrates TIE into its library so that new 
instructions can be compiled and simulated directly. In 
this experiment, the JM8.0 of H.264 is used as the inputs 
[10]. To evaluate the proposed methodology, we have 
implemented a H.264-JM8.0 system based on the Xtensa 
platform. Then, a configurable core is configured as our 
baseline processor. This core is equipped with a memory 
of 1G and runs with a frequency of 319 MHz. 
 
3.2. Profiling and Analysis 
 

Table 1 shows a summary of the profiling results for 

intra prediction in H.264 encoder. The first column is the 
function names. The second column displays the number 
of committed cycles for each function, and the third 
column under “#rate” shows the percentage of the total 
cycle count which is spent in executing this function. 

From the profiling results in Table 1, we can find that 
the execution time is typically spent in several functions, 
such as Mode_Decision_for_4x4IntraBlock and dct_luma. 
Based on further analysis on these functions via sub-
graph matching, the results indicate that high time 
consumption is brought by two aspects: complex 
operations and nesting loops. To optimize these two 
structures, our strategy is to synthesize fusion instructions 
first, and parallelism and pipelining optimizations are 
utilized to unroll the loops and speed up the computation. 
 
3.3. Specific Instruction Customization Results 

 
The customization process includes two steps. First, 

the complex operations which are used with a high 
frequency will be synthesized to fusion instructions. This 
technique is similar to the reference [4]. For example, in 
the function intrapred_luma, many types of complex 
operations are used frequently, which are partially 
classified in Table 2. After the fusion instruction 
generation, the cycle count of function intrapred_luma is 
reduced by 4.1%. Second, the parallelism and pipelining 
optimizations are adopted to increase the computing 
speed. Because many of loops are used in this application, 
there are multiple operations on a set of vector data. 
Therefore, the acceleration potential can be extracted via 
parallel and pipeline structures.  

To present the effect of the specific instructions, we 
tested the H.264-JM8.0 system by a set of video 
benchmarks [11]. Table 3 presents the experimental 
results, where the first column illustrates the benchmark 
names, the column with “#frame” denotes the number of 
frames, and “#reference” means the number of previous 
frames used for inter motion search. The column under 
“#original” presents the cycles under basic configurations, 

operation acc (inout x, in y, in z, in w)
{   
     x=x+y*z+w;
}

void Matrix (A[], B[], C[], M[])
{ int temp[4];
   for (int i=0; i<=3; i++) temp[i]=0;
   for (int i=0; i<=3; i++){
       acc(temp[0], B[i], M[i], C[i]);
       acc(temp[1], B[i], M[i+4], C[i]);
       acc(temp[2], B[i], M[i+8], C[i]);
       acc(temp[3], B[i], M[i+12], C[i]); }
   for (int i=0; i<=3; i++) A[i]=temp[i];
}//end Matrix

operation mua (out x, in y[], in z[], in w)
{    int n= vector_size(y); 
      // The size of the vector   
      x=TIEmul( y[0:n-1], z[0:n-1])+w;
      // TIEmul: multiplication of vectors
}

operation mul (out x, in y[], in z[])
{    int n= vector_size(y); 
      x=TIEmul( y[0:n-1], z[0:n-1]);
}

void Matrix (A[], B[], C[], M[])
{ 
      mua(A[0], B[0:3], M[0:3], C[0]); 
      mua(A[1], B[0:3], M[4:7], C[1]);
      mua(A[2], B[0:3], M[8:11], C[2]); 
      mua(A[3], B[0:3], M[12:15], C[3]);
}//end Matrix

void Matrix (A[], B[], C[], M[])
{    mul(A[0], B[0:3], M[0:3]);
      ada (A[0], C[0]); 
      mul(A[1], B[0:3], M[4:7]);
      ada (A[1], C[1]); 
      mul(A[2], B[0:3], M[8:11]); 
      ada (A[2], C[2]); 
      mul(A[3], B[0:3], M[12:15]);
      ada (A[3], C[3]); 
}//end Matrix

operation ada (inout x, in y)
{  x=x+y;  }

#SI

#CP

(1) Fusion instruction (2) Parallelism (3) Pipelining

void Matrix (A[], B[], C[], M[])
{ int temp[4];
   for (int i=0; i<=3; i++) temp[i]=0;
   for (int i=0; i<=3; i++){
        temp[0]=temp[0]+B[i]*M[i]+C[i];
        temp[1]=temp[1]+B[i]*M[i+4]+C[i];
        temp[2]=temp[2]+B[i]*M[i+8]+C[i];
        temp[3]=temp[3]+B[i]*M[i+12]+C[i];
   }//end for
   for (int i=0; i<=3; i++) A[i]=temp[i];
}//end Matrix
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(a) (b)  
Figure 3.  (a) Example of matrix multiplication. (b) Detailed results for the three-step instruction customization, which are based on the example in figure 
(a). The three columns present the results after fusion instruction generation, parallelism and pipelining processes respectively. Here “#SI” means specific 
instructions, and “#CP” means the corresponding C programs. 
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“#fusion” shows the results after fusion instruction 
generation, and “#optimization” presents the results after 
the parallelism and pipelining processing. In addition, 
“#cycle” means the total number of cycles, and “#imp” 
represents the percentage of improvements compared to 
the system without specific instructions. 

From Table 3, we can find that specific instructions 
can achieve about 67% improvements than the core under 
basic configurations. This case study on the H.264 has 
offered a powerful proof for the proposed methodology. 
 
4. Conclusion 
 

In this paper, a new specific instruction customization 
methodology for the multimedia processor acceleration is 
proposed. It integrates an automated profiling, three-step 
instruction generation and automated synthesis processes. 
To evaluate this methodology, a case study of H.264 is 
employed. The final experimental results indicate that the 
proposed three-step instruction customization method can 

effectively reduce the latency of the H.264 system. 
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Table 1. 
Profiling results for the functions related with intra prediction 

 

Function name #cycle #rate 

intrapred_luma 60916074 0.41%
intrapred_luma_16x16 44688038 0.30%
dct_luma 1587575203 10.8%
dct_luma_16x16 228965298 1.55%
dct_chroma 269122886 1.83%
OneComponentLumaPrediction4x4 37376669 0.25%
LumaPrediction4x4 38242006 0.26%
IntraChromaPrediction4x4 17028900 0.11%
ChromaPrediction4x4 10247912 0.06%
IntraChromaPrediction8x8 8004903 0.05%
Mode_Decision_for_4x4IntraBlocks 430339090 2.92%
RDCost_for_4x4IntraBlocks 192749556 1.31%
RDCost_for_8x8blocks 19664179 0.13%
RDCost_for_macroblocks 128803212 0.87%
getNeighbour 54966920 0.37%

Table 2. 
Fusion instruction examples for the function intrapred_luma 

Operation format #count 

reg1=reg2=reg3=reg4=const 634032 
reg0=(reg1+reg2+const) / const 462672 
reg0= (reg1+reg2+reg3+const) / const 68544 
reg0= (reg1+reg2*const+reg3+const) / const 1062432 

Table 3. 
Experimental results on a set of video benchmarks for H.264 

 

#original #fusion #optimization 
Benchmarks #frame #reference 

#cycle (×109) #cycle (×109) #imp #cycle (×109) #imp 
foreman 300 5 14.690870364 11.913480837 18.91% 3.475919012 76.34%

akiyo 300 3 9.269737320 7.246989328 21.82% 3.290705323 64.50%
container 300 4 10.137229051 8.261425415 18.50% 3.405389364 66.41%

bowing 300 3 9.335069590 7.698927509 17.53% 3.173851207 66.00%
carphone 382 2 9.947224374 8.891701875 10.62% 3.338589347 66.44%

claire 494 3 9.688303345 8.403139177 13.27% 3.279317640 66.15%
coastguard 300 4 13.350951331 13.040796922 2.33% 4.183072978 68.67%

hall_monitor 300 4 9.896111243 7.918765618 19.98% 3.341251978 66.24%
husky 250 3 12.361467688 11.278290829 8.77% 4.010371098 67.56%

miss_am 150 5 9.442842319 8.636607660 8.54% 3.197977006 66.13%
suzie 150 5 10.020138039 8.759141504 12.58% 3.361292739 66.45%
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