
Automated Specific Instruction Customization Methodology for
Multimedia Processor Acceleration*

Kang Zhao1, Jinian Bian1, Sheqin Dong1, Yang Song2, Satoshi Goto2

1EDA Lab, Dept. Computer Science & Technology, Tsinghua University, Beijing, P.R. China
2Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Japan

Email: zhao-k04@mails.tsinghua.edu.cn

* This work was supported by National Natural Science Foundation of China under grant NSFC-90207017, and NSFC-90067001; National Basic

Research Program of China (973) under grant 2005CB321605.

Abstract

To enhance the computing ability of the multimedia
processor, this paper presents an automated specific
instruction customization methodology. Specially, this
methodology features a profiling stage which is equipped
with a sub-graph matching algorithm. Furthermore, to
support the features of multimedia systems, three special
structures are integrated, such as fusion instructions,
parallel and pipelining. To evaluate this methodology, a
case study on H.264 encoder is adopted, and a H.264-
JM8.0 system is built based on the Xtensa toolset from
Tensilica Inc. We have verified it with a set of video
benchmarks. The experimental results indicate that 67%
enhancement can be obtained via specific instructions.

1. Introduction

Recently, the growing demand of multimedia has been
leading to a development of embedded systems, which
not only supports ever-increasing functionality, but also
needs to be flexible enough [1]. The tradeoff between the
efficiency and flexibility can be obtained through the use
of application specific instruction-set processor (ASIP).

For many multimedia systems, ASIP can bring better
effects than the methods based on only hardware or only
software. For example, H.264 is a new standard of video
codec. To accelerate its computation, many methods have
been proposed, including both hardware implementation
[2] and software optimization [3]. However, in the aspects
that need both efficiency and flexibility, ASIP will be a
better choice. However, using ASIP techniques in H.264
is still in its infancy. For example, Kim presented an ASIP
approach for the H.264 system, which uses the combined
instructions to enhance the performance [4].

However, the methods above only use the configurable
architectures to accelerate the ASIP, which is similar to
the hardware implementation. Hence, the potential of is
not thoroughly extracted. Because the kernel of ASIP is
specific instructions, the customizable instruction set will
be used to accelerate the multimedia system in this paper.

Recently, many researches have been done on the
specific instruction customization. In the literature [5], an
algorithm based on a binary decision tree model was
proposed. In addition, a similar approach was introduced
by Yu [6], which reduces the exploration space of specific
instruction customization by enumerating patterns based
on the operations in corn structures. Furthermore, to solve
the problem of instruction customization, Sun proposed a
synthesis methodology [7] based on the Xtensa core [8].

However, the above techniques have two limitations:
first, those methods focus on universal applications and
cannot reflect the special requirements of multimedia
applications; second, most techniques focus on a part of
the whole customization process and specially do not
present a methodology for the multimedia applications
from the input programs to the final processor synthesis.

To address this issue, a methodology which focuses on
the specific instruction customization is proposed in this
paper. To satisfy the special requirements of multimedia,
special structures are considered. This methodology is
built on the Xtensa LX2 core, which is a configurable
processor. Finally, to verify the proposed methodology, a
case study on the H.264 encoder is presented.

The rest of the paper is organized as follows. In
Section 2, the methodology of instruction customization
is presented. Then in Section 3, a case study of the H.264
is given. Finally, a conclusion is drawn in Section 4.

2. Methodology

This section first formulates the problem with a data
flow graph (DFG) description, and then presents the flow
of instruction customization methodology. Finally, the
detailed explanations for this workflow are given.

2.1. Problem Formulation

The specific instructions should be extracted from the

objective application. Therefore, we first extract the data
dependency information from the application programs
and formulate it with DFG.

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.43

321

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.43

321

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:42:25 UTC from IEEE Xplore. Restrictions apply.

Definition 1: G(V, E, T) is a DFG, where V represents
the set of nodes which denotes the operations, and E is
the set of arcs which stands for data dependency relations.
T is the set of parameters for each node and it represents
the execution time of each operation.

Definition 2: For DFG G, the total execution time TG
will be equal to the sum of parameters on the longest path.

Because specific instruction is the combination of basic
operations, in DFG it will be mapped to feasible sub-
graphs which satisfy several constraints. So this problem
can be described as follows.

Problem: Given a DFG G(V, E, T), find a set of
feasible sub-graphs {Gi’}, so that TG is minimized.

2.2. Design Flow

To solve the problem mentioned above, the details of
the methodology are presented. The input is the programs
written with C/C++ language, and the final output is the
synthesized processor, as shown in Figure 1.

Since the operation is on instruction level, the C code
is first compiled and converted to assembler (Step 1), and
then the data dependency relations are extracted (Step 2).
Based on the assembler and DFG, a profiling process is
adopted to find the features of the objective application
(Step 3). In this process, a sub-graph matching algorithm
is used. Then the specific instructions can be customized
based on the profiling results. In this process, three types
of special structures are employed: fusion instruction,
parallelism and pipelining. The three types of instructions
can reflect the features of multimedia programs.

After the specific instruction generation, the focus will
be transferred to the method of inserting new instructions
into the C code so that both the compiler and simulator
can understand them. To settle this issue, an instruction
language named TIE is used, which is defined in Xtensa
and can be accepted by its compiler and simulator.

2.3. Sub-graph matching algorithm in profiling

The motivation of sub-graph matching is to find the

operations which are used frequently. If the frequency is
low, it will be unworthy to accelerate it via specific
instructions with a cost enhancement. Each specific
instruction is mapped to one sub-graph, so a sub-graph
matching algorithm can be used to seek out the candidate
specific instructions. As shown in Figure 2, the graph A
and B both have the same operations “(&)|(>>)”, so this
format will be synthesized to a specific instruction.

However, the exploration space of this problem is
huge. Assume the DFG G has n nodes, so the sub-graph
number of graph G is 2n. Then the number of mapping
between the two sets of sub-graphs will be:

()2

2

2 2 2 2
n

n

n n n n× × × =

To speed up the exploration and reduce the exponential
space, a tool called pattmatch is used, which is supplied
by Pattlib software [9]. This toolkit utilizes a heuristics
isomorphism algorithm with a complexity of O(nlogn) to
compare different sub-graph patterns in DFG.

2.4. Specific Instruction Generation Strategy

Based on the profiling results, specific instructions will
be customized. Three structures are used to achieve this
object: fusion instruction, parallelism and pipelining. To
explain them clearly, an example is shown in Figure 3(a).

First, fusion instruction is used to merge multiple basic
operations into one instruction. Since specific instruction
is viewed as hardware for special purpose, the motivation
of fusion instruction is similar to hardware acceleration.
For the multimedia systems, many complicated operations
are used frequently. So we can consider synthesizing the
fusion instructions to accelerate the computation. An
example is shown in Figure 3(b). The limitation is that it
will increase the cost of the final synthesized processor.

Second, the motivation of the parallelism process is to
implement sets of operations simultaneously. In this
process SIMD (Single Instruction Multiple Data) is used,
which describes a set of operations where an identical
computation is performed via a series of operands in
parallel. In Figure 3(b), SIMD is used to unroll the loop
in the C program. This feature can effectively reduce the
cycles brought by the iterations. However, SIMD cannot
extract the potential of parallelism when the complexity
of each instruction is very high.

Assembler Data Flow Graph

Profiling & Analysis

Specific Instruction Generation

Instruction insertion
into C program

Instruction insertion
into processor core

Synthesis

Compile C programs with specific instructions

Performance
satisfy?

Synthesize processor

C Program
TIE files generation

Verilog RTL description generation

Fusion instructions generation

Parallelism optimization

Pipelining optimization
Y

N

1 2

3

4

4.1

4.2

4.3

5

6 7

8

9

10

11

12

Figure 1. Workflow for the specific instruction automated customization

+ => =>
Specific

Instruction
>>&

|

Var = (P&Q) | (R>>S) | (X&W)

>>&

| &

|

a b

c d

e

Temp = (X&Y) | (M>>N)

>>&

|

g

h

f

A B

Figure 2. Example explaining the sub-graph matching process

322322

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:42:25 UTC from IEEE Xplore. Restrictions apply.

Third, a pipelining process is utilized to disassemble
some specific instructions and run via pipelining. As
shown in Figure 3(b), the speed is raised through SIMD
instruction mua, however, there will be a high complexity
for the units to implement this instruction. To reduce the
complexity, we can divide it into two parts and run them
via pipelining. So ada is released and the clock frequency
is raised. Besides, due to the pipelining process on mul
and ada instructions, the whole latency is reduced.

3. Case Study of Intra Prediction in H.264

To evaluate the proposed methodology, a case study
on the intra prediction application of H.264 is presented.

3.1. Experimental Setup

To customize specific instructions, the experimental
platform should satisfy three conditions: first, it should
have an analyzer on C programs so that it can analyze
which part of the code should be synthesized to specific
instructions; second, there must be a configurable core
which can be changed along with the generation of new
instructions; third, both the compiler and simulator can
identify the new instructions inserted in C programs.

Tensilica’s Xtensa RB2006.0 toolset for Xtensa LX2 is
chosen as the experimental platform, which just satisfies
the three conditions above. Its compiler is the subset of
gcc, and Xtensa integrates TIE into its library so that new
instructions can be compiled and simulated directly. In
this experiment, the JM8.0 of H.264 is used as the inputs
[10]. To evaluate the proposed methodology, we have
implemented a H.264-JM8.0 system based on the Xtensa
platform. Then, a configurable core is configured as our
baseline processor. This core is equipped with a memory
of 1G and runs with a frequency of 319 MHz.

3.2. Profiling and Analysis

Table 1 shows a summary of the profiling results for

intra prediction in H.264 encoder. The first column is the
function names. The second column displays the number
of committed cycles for each function, and the third
column under “#rate” shows the percentage of the total
cycle count which is spent in executing this function.

From the profiling results in Table 1, we can find that
the execution time is typically spent in several functions,
such as Mode_Decision_for_4x4IntraBlock and dct_luma.
Based on further analysis on these functions via sub-
graph matching, the results indicate that high time
consumption is brought by two aspects: complex
operations and nesting loops. To optimize these two
structures, our strategy is to synthesize fusion instructions
first, and parallelism and pipelining optimizations are
utilized to unroll the loops and speed up the computation.

3.3. Specific Instruction Customization Results

The customization process includes two steps. First,

the complex operations which are used with a high
frequency will be synthesized to fusion instructions. This
technique is similar to the reference [4]. For example, in
the function intrapred_luma, many types of complex
operations are used frequently, which are partially
classified in Table 2. After the fusion instruction
generation, the cycle count of function intrapred_luma is
reduced by 4.1%. Second, the parallelism and pipelining
optimizations are adopted to increase the computing
speed. Because many of loops are used in this application,
there are multiple operations on a set of vector data.
Therefore, the acceleration potential can be extracted via
parallel and pipeline structures.

To present the effect of the specific instructions, we
tested the H.264-JM8.0 system by a set of video
benchmarks [11]. Table 3 presents the experimental
results, where the first column illustrates the benchmark
names, the column with “#frame” denotes the number of
frames, and “#reference” means the number of previous
frames used for inter motion search. The column under
“#original” presents the cycles under basic configurations,

operation acc (inout x, in y, in z, in w)
{
 x=x+y*z+w;
}

void Matrix (A[], B[], C[], M[])
{ int temp[4];
 for (int i=0; i<=3; i++) temp[i]=0;
 for (int i=0; i<=3; i++){
 acc(temp[0], B[i], M[i], C[i]);
 acc(temp[1], B[i], M[i+4], C[i]);
 acc(temp[2], B[i], M[i+8], C[i]);
 acc(temp[3], B[i], M[i+12], C[i]); }
 for (int i=0; i<=3; i++) A[i]=temp[i];
}//end Matrix

operation mua (out x, in y[], in z[], in w)
{ int n= vector_size(y);
 // The size of the vector
 x=TIEmul(y[0:n-1], z[0:n-1])+w;
 // TIEmul: multiplication of vectors
}

operation mul (out x, in y[], in z[])
{ int n= vector_size(y);
 x=TIEmul(y[0:n-1], z[0:n-1]);
}

void Matrix (A[], B[], C[], M[])
{
 mua(A[0], B[0:3], M[0:3], C[0]);
 mua(A[1], B[0:3], M[4:7], C[1]);
 mua(A[2], B[0:3], M[8:11], C[2]);
 mua(A[3], B[0:3], M[12:15], C[3]);
}//end Matrix

void Matrix (A[], B[], C[], M[])
{ mul(A[0], B[0:3], M[0:3]);
 ada (A[0], C[0]);
 mul(A[1], B[0:3], M[4:7]);
 ada (A[1], C[1]);
 mul(A[2], B[0:3], M[8:11]);
 ada (A[2], C[2]);
 mul(A[3], B[0:3], M[12:15]);
 ada (A[3], C[3]);
}//end Matrix

operation ada (inout x, in y)
{ x=x+y; }

#SI

#CP

(1) Fusion instruction (2) Parallelism (3) Pipelining

void Matrix (A[], B[], C[], M[])
{ int temp[4];
 for (int i=0; i<=3; i++) temp[i]=0;
 for (int i=0; i<=3; i++){
 temp[0]=temp[0]+B[i]*M[i]+C[i];
 temp[1]=temp[1]+B[i]*M[i+4]+C[i];
 temp[2]=temp[2]+B[i]*M[i+8]+C[i];
 temp[3]=temp[3]+B[i]*M[i+12]+C[i];
 }//end for
 for (int i=0; i<=3; i++) A[i]=temp[i];
}//end Matrix

0 1 2 30 0 0

4 5 6 71 1 1

2 8 9 10 11 2 2

3 3 312 13 14 15

M M M MA B C
M M M MA B C

A M M M M B C
A B CM M M M

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

(a) (b)
Figure 3. (a) Example of matrix multiplication. (b) Detailed results for the three-step instruction customization, which are based on the example in figure
(a). The three columns present the results after fusion instruction generation, parallelism and pipelining processes respectively. Here “#SI” means specific
instructions, and “#CP” means the corresponding C programs.

323323

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:42:25 UTC from IEEE Xplore. Restrictions apply.

“#fusion” shows the results after fusion instruction
generation, and “#optimization” presents the results after
the parallelism and pipelining processing. In addition,
“#cycle” means the total number of cycles, and “#imp”
represents the percentage of improvements compared to
the system without specific instructions.

From Table 3, we can find that specific instructions
can achieve about 67% improvements than the core under
basic configurations. This case study on the H.264 has
offered a powerful proof for the proposed methodology.

4. Conclusion

In this paper, a new specific instruction customization
methodology for the multimedia processor acceleration is
proposed. It integrates an automated profiling, three-step
instruction generation and automated synthesis processes.
To evaluate this methodology, a case study of H.264 is
employed. The final experimental results indicate that the
proposed three-step instruction customization method can

effectively reduce the latency of the H.264 system.

5. References

[1] F. Sun, and et al, “Application-specific heterogeneous
multiprocessor synthesis using extensible processors,”
IEEE Trans. CAD, Vol. 25, Issue 9, pp. 1589-1602, 2006.
[2] C. Y. Chen, and et al, “Analysis and architecture
design of variable block-size motion estimation for H.264
AVC,” IEEE TCAS-I, Vol. 53, Issue 3, pp. 578-593, 2006.
[3] F. Pan, and et al, “Fast mode decision algorithm for
intra prediction in H.264/AVC video coding,” IEEE TCAS
for Video Technology, Vol. 15, Issue 7, pp. 813-822, 2005.
[4] S. D. Kim, J. H. Lee, C. J. Hyun and M. H. Sunwoo,
“ASIP approach for implementation of H.264/AVC,”
Proc. ASPDAC, Yokohama, Japan, pp. 758-764, 2006.
[5] K. Atasu, and et al, “Automatic application specific
instruction-set extensions under micro-architectural
constraints,” Proc. DAC, CA, pp. 256-261, 2003.
[6] P. Yu and T. Mitra, “Scalable Custom Instructions
Identification for Instruction-Set Extensible Processors,”
Proc. Conference on Compiler, Architectures and
Synthesis for embedded systems, USA, pp. 69-78, 2004.
[7] F. Sun, S. Ravi, and et al, “Custom-instruction
synthesis for extensible-processor platforms,” IEEE Trans.
CAD, Vol. 23, Issue 2, pp. 216–228, 2004.
[8] Tensilica Inc.: http://www.tensilica.com/
[9] Pattlib: http://sourceforge.net/projects/pattlib/
[10] H.264 reference: http://iphome.hhi.de/suehring/tml/
[11] Xiph Test Media: http://media.xiph.org/video/derf/

Table 1.
Profiling results for the functions related with intra prediction

Function name #cycle #rate

intrapred_luma 60916074 0.41%
intrapred_luma_16x16 44688038 0.30%
dct_luma 1587575203 10.8%
dct_luma_16x16 228965298 1.55%
dct_chroma 269122886 1.83%
OneComponentLumaPrediction4x4 37376669 0.25%
LumaPrediction4x4 38242006 0.26%
IntraChromaPrediction4x4 17028900 0.11%
ChromaPrediction4x4 10247912 0.06%
IntraChromaPrediction8x8 8004903 0.05%
Mode_Decision_for_4x4IntraBlocks 430339090 2.92%
RDCost_for_4x4IntraBlocks 192749556 1.31%
RDCost_for_8x8blocks 19664179 0.13%
RDCost_for_macroblocks 128803212 0.87%
getNeighbour 54966920 0.37%

Table 2.
Fusion instruction examples for the function intrapred_luma

Operation format #count

reg1=reg2=reg3=reg4=const 634032
reg0=(reg1+reg2+const) / const 462672
reg0= (reg1+reg2+reg3+const) / const 68544
reg0= (reg1+reg2*const+reg3+const) / const 1062432

Table 3.
Experimental results on a set of video benchmarks for H.264

#original #fusion #optimization
Benchmarks #frame #reference

#cycle (×109) #cycle (×109) #imp #cycle (×109) #imp
foreman 300 5 14.690870364 11.913480837 18.91% 3.475919012 76.34%

akiyo 300 3 9.269737320 7.246989328 21.82% 3.290705323 64.50%
container 300 4 10.137229051 8.261425415 18.50% 3.405389364 66.41%

bowing 300 3 9.335069590 7.698927509 17.53% 3.173851207 66.00%
carphone 382 2 9.947224374 8.891701875 10.62% 3.338589347 66.44%

claire 494 3 9.688303345 8.403139177 13.27% 3.279317640 66.15%
coastguard 300 4 13.350951331 13.040796922 2.33% 4.183072978 68.67%

hall_monitor 300 4 9.896111243 7.918765618 19.98% 3.341251978 66.24%
husky 250 3 12.361467688 11.278290829 8.77% 4.010371098 67.56%

miss_am 150 5 9.442842319 8.636607660 8.54% 3.197977006 66.13%
suzie 150 5 10.020138039 8.759141504 12.58% 3.361292739 66.45%

324324

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:42:25 UTC from IEEE Xplore. Restrictions apply.

