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Abstract

To improve the computation efficiency ofapplication
specific instruction-set processor (ASIP), a strategy of
hardwarelsoftware collaborative design is usually
utilized In this process, the auto-customization of
instruction set has always been a key part to support the
automated design ofASIP. The key issue ofthis problem
is how to effectively reduce the huge exponential
exploration space in the instruction identification
process. To address this issue, we firstformulate it as a
sub-graph enumeration problem under multi-
constraints, and then propose a fast instruction
identification algorithm based on basic convex pattern
(BCP) model. The kernel technique in this algorithm is
the transformation from the graph exploration to the
formula-based computations. Experimental results have
indicated that the proposed algorithm has a distinct
reduction on the execution time.

Keywords: BCP, Instruction identification, CSCW
design, Application Specific Instruction-set Processor.

1. Introduction

Application Specific Instruction-set Processor (ASIP)
is a processor designed for a set of particular
applications, which provides a good tradeoff between
efficiency and flexibility [1]. In response to the
challenges of high efficiency and time-to-market
pressure, customizable ASIP has been frequently
investigated and become an attractive technology to
solve these issues.

To improve the computation efficiency of micro-
processors, application program is usually implemented
through a hardware/software collaborative design: if a
complex operation is utilized frequently in the program,
specific instruction will be customized to speed up the
computation, i.e. through hardware; if not, it will be
compiled with the basic instruction-set, i.e. through
software. In this process the specific instruction-set
customization plays a very important role, since it can
greatly affect the performance of ASIP. The basic

strategy to achieve instruction automated design is to
combine basic operations in the data flow graph (DFG),
which can be formulated as a sub-graph selection
problem. To implement this strategy, two important
problems must be solved: (1) custom instruction
identification, which enumerates all feasible sub-graphs
from the DFG extracted from the program; (2)
instruction selection, which selects an optimal
instruction set under various constraints [2]. In this
paper, we only focus on the first problem, i.e. custom
instruction identification.

Recently, many academic researches have addressed
this issue. However, it is still far from the exploration
space in custom instruction identification to be
effectively solved. Kubilay Atasu [3] first presents an
algorithm based on a BDT (binary decision tree) model.
This algorithm utilizes a pruning strategy to reduce the
design space, and thus the automated instruction
identification can be facilitated. A similar approach is
introduced in [2]. It reduces the exploration space by
defining the constraint of invalid nodes and
enumerating patterns based on the operations on
upward and downward corns. Also, some other
researchers deal with intractability by using very strict
constraints [4], and propose heuristic algorithms to limit
the search space [5, 6]. Besides, the strategy that
combines instruction identification with selection is also
investigated in [7]. However, those algorithms cannot
enumerate all feasible sub-graphs, and the exponential
space have not been reduced drastically yet.

There are two intrinsic limitations for these proposed
techniques. First, the exploration space is exponential
and cannot be reduced easily. Second, the running time
will be beyond endurance when the size of problem is
large.

To solve this problem, we propose a fast algorithm
based on a novel model BCP (Basic Convex Pattern).
First, feasible BCPs are determined by constructing a
multi-stage graph, which can effectively reduce the
complexity. Then, feasible BCPs are extracted through
adjacency matrix multiplication between adjoining
stages. Finally, all valid sub-graphs are enumerated
using the combination and partition operations on BCPs.
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The rest of the paper is organized as follows. In
Section 2, the formulation of custom instruction
identification is first introduced. Then in Section 3, the
previous BDT-based algorithm for custom instruction
identification is described and compared. In Section 4,
our algorithm is then illustrated as well as how it solves
the enumeration problem. Finally experimental results
are shown in Section 5 to support our algorithm. Our
conclusion and future works are presented in Section 6.

2. Problem Formulation

As discussed, the custom instruction identification
process can be formulated as a sub-graph enumeration
problem under multi constraints. To clearly illustrate the
formulation, we first present several preliminary
definitions:

Definition 1: G (V, E) is a directed acyclic graph
(DAG), where V is the set of nodes which denote basic
operations in the program, and E is the set of arcs which
represents the data dependency relations between
operations.

Definition 2: Let G'(V', E') be a sub-graph of G(V,
E). For V e (e q E' A e connects with V'), the number
of the incoming arcs is input degree, and the number of
outgoing arcs is output degree.

Definition 3: Let G'(V', E') be a sub-graph of G(V,
E). For VvV, V2 V', if all the nodes on the paths
between v1 and v2 are contained in V', G' is convex;
otherwise, G' is non-convex.

For example, Figure 1 shows two different sub-
graphs of the same graph, where the nodes and arcs of a
sub-graph are surrounded by the broken line. The sub-
graph (a) is a convex sub-graph but the sub-graph (b) is
not, because the node E is on the path from node B to
node F, but it is not contained in sub-graph (b).

Thus, the basic operations can be mapped to the
nodes of DAG, and the candidate special instructions
can be mapped to valid sub-graphs. In this way, the
custom instruction identification problem can be
converted into a sub-graph enumeration problem, which
is specified as follows:

Problem: Given a directed acyclic graph G (V, E),
find all the feasible sub-graphs that satisfy the following
two conditions:
+ The input and output degrees of the sub-graph

cannot exceed the maximum number, since the
maximum numbers of input and output operands in
custom instructions are constrained.

+ Only the convex sub-graph is feasible. If the
candidate sub-graph is non-convex, there must be
two pairs of incoming and outgoing arcs between
this sub-graph and another one. This cannot help
the achievement of the automated customization for
the special instruction corresponding to this sub-
graph.

(a) convex sub-graph (b) non-convex sub-graph

Fig. 1. Definition of convex and non-convex sub-graphs.

_

Fig. 2. An example of the binary decision tree.

3. Previous Algorithm

The custom instruction identification problem has
attracted lots of attention in recent years. Some
promising algorithms are correspondingly proposed.
The most typical algorithm is introduced in [3], which
utilizes a binary decision tree (BDT) and transforms the
sub-graph enumeration problem into a BDT path
selection problem.

In this approach, DFG is first converted into BDT.
For each node in DFG, it is mapped to a certain level in
BDT. Each binary branch in BDT denotes whether the
target node is selected or not when generating sub-
graphs. As depicted in Figure 2, this BDT has three
levels corresponding to three nodes in DFG. For each
branch,1 represents that this node is contained and 0
represents not. Therefore, every path from top to bottom
in BDT is one selection for a candidate sub-graph.
Obviously the exploration space is exponential, since
there will be2e paths in BDT if the number of nodes in
DFG is n. To reduce the exploration space, it utilizes a
branch-and-bound strategy. In the BDT generation
process, the nodes are first areanged with reverse
topological sorted order. Thus, if one path in BDT
violates the two conditions presented in section po, the
exploration on the following sub-tree is stopped.

The motivation of rithis itrm is to enumerate all
the candidate solutions with BDT format, and then
select the feasible ones with the pruning strategy.
However, the space is exponential and this intrinsic
limitation will lead to unendurable runtime performance
when the graph size is large. To speed up the
calculation, we present a fast algorithm based on a
novel model BCP.

4. Our Fast Algorithm

To reduce the exponential exploration space of the
instruction identification problem, we first define a
novel model Basic Convex Pattern (BCP), and then
present further details about the main flow based on this
model.
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Fig. 3. BCP model definition. Fig. 4. Main flow

4.1. BCP Model

Definition 4: Let G (V, E) be a DAG. For VvV, V2
V, if the number of paths between v1 and v2 is bigger
than one, the sub-graph is in the basic convex pattern
that is composed of the nodes on all the paths between
v1 and v2.
From this definition it is obvious that each BCP is a

convex sub-graph. This feature can be used to find all
the feasible sub-graphs through combining and
partitioning operations on BCP. The BCP model is
presented to satisfy the conditions first in a local region,
which may reduce the exploration space.

To emphasize the hierarchical feature, we abstract
BCP into a multi-level rectangle format for convenient
analysis, as shown in Figure 3. All the nodes in DFG
are mapped to the points in the rectangle. In addition,
the arcs between different levels are mapped to the arcs
in the DFG and their directions are all downwards.
However, if two points at the same level are connected,
then these two points will correspond to the same node
in DFG. For example, points a and a' are mapped onto
the same node a in original DFG. The rectangle
specification is used to obtain a regular form, which can
bring a bright sight in the analysis on the BCP partition
and combination processes.

4.2. Main Flow

The strategy of our method is to find all the feasible
BCPs first, and then enumerate feasible sub-graphs
through BCP combining and partitioning operations.

Figure 4 shows the main design flow. To reduce the
space of BCP searching, we first convert the ordinary
DAG into a pre-defined multi-stage graph format. Then,
through calculating the connected relation matrices
between each two stages in the multi-stage graph,
feasible BCPs are extracted out. Finally, feasible sub-
graphs are enumerated through BCP partition and
combination operations. The advantage of this flow is
that it can reduce the execution time in three sub-
processes. These algorithms will be presented in detail
in the following sub-sections.

4.3. First Phase: Multi-stage Graph Generation

the three conditions below, it is a multi-stage graph:
+ Graph G can be partitioned into m stages (m> 1)

and the node number of each stage is more than 0.
+ Iftwo nodes belong to the same stage, there will be
no arcs between them.

+ Each arc only exists between neighboring stages.
Separate stages have no arcs between them.

The motivation of converting G to multi-stage graph
is to reduce the complexity. To find out all BCPs, the
paths between each two nodes in G must be determined.
Further, if the adjacency matrix A,, is used, (A,.,)'
should be calculated out to determine the paths between
each two nodes. And its complexity is n- 0 (n3) =O(n4).
However, if multi-stage graph is utilized, there is no
need to calculate the paths between each two nodes;
instead, we can calculate each adjacency matrix from a
low stage to another high stage. Its complexity is:

((M-1)+(m-2)+ -+1)xO(m
n

=0 n2 m)

where m denotes the graph's stage number.
In the generation process of multi-stage graph, new

nodes should be added, such as the black nodes shown
in Figure 5. And we name those nodes as rubbish node.
For example, there is an arc between node A and node C
in Figure 5, but they cannot be connected because they
belong to detached stages. So there must be one rubbish
node which belongs to the same stage with node B.

The multi-stage graph generation procedure is
described as follows:

Procedure Multi_Stage_Graph (Graph)
Find the topological sorted order (Depth-First-Search);
For each node v Do

stage(v)=O; Initialize stage value of each node v
End For;
For each node v in topological sorted order Do
S C v; 1I S is a temporary node set
For each nodepE (V-S) Do

stage(p) C max{stage(p), stage(p)+ d(v, p)};
ld represents the adjacency relation, 0 or 1

End For;
End For; 1I Determine the stages of all nodes

For each arc e in graph G Do
IF e spans two detached stages Then

Calculate minus stages minus stage;
Add minus_stage-I rubbish nodes;

End IF;
End For; 11 Add necessary rubbish nodes

In procedure Multi Stage Graph, it first arranges the
nodes with a topological sorted order, and its
complexity is O( El ± P); then the stage value for each
node is determined through an O( E logl 1') algorithm
similar to Dijkstra algorithm. Finally the rubbish nodes

Definition 5: Let G (V, E) be a DAG. If G satisfies
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Fig. 5. An example of the multi-stage graph generation.

are added to the graph. The complexity of the multi-
stage graph generation algorithm is polynomial.

4.4. Second Phase: BCP Extraction

After the multi-stage graph generation, it comes to
the BCP extraction. As explained above, using multi-
stage graph can reduce the complexity from O(n4) to
O(n3). To extract feasible BCP, the paths between two
target nodes must be determined, so the adjacency
matrix between two stages is needed.

If there are three sets ofnodes A, B and C:
A={a1,a2} B={b1,b2,b3} C={c1,c2}
Their adjacency matrices are represented with M. For

example MAB stands for the path numbers between
nodes in set A and B. It is straightforward to get the
following result:

*. MAB = Lab2

* MAC =F
Lqac2

ab12 ab13
ab22 ab23 MBC

-3

IL abli xbcil
ac12 _i=

C22- E ab2i x bcel
i=l

3

Zabli x bCi2
i=l

3

Z ab2i x bce2
i=l

*.MAC = MAB XMBC
So the path numbers can be calculated using matrix

multiplication. Furthermore, the nodes on paths can also
be tracked along the opposite direction of matrix
multiplication. To reduce the amount of calculation, we
can operate from high levels to low levels so that the
values that are already worked out can be utilized. Take
Figure 5 for example, M56 and M45 are calculated first,
and then M46 can be got using the value of M56 and M45
with the following procedure:

Procedure Matrix(Multi stage_graph)
For i from stage num- 1 downto 1 Do
For] from 1 to stage num-i Do
//variable stage_num represents the number of stage

IF value ofj is 1 Then
M(i, i+j) '¢- 10, I1 3;

1I values of matrix M(i, ij) are 0 or 1
Haccording to the connected relations straight

ELSE
M(i, i+j) '_ M(i, i+j-l)*M(i+j-l, i+j);

End IF;
End For;

End For;

According to the adjacency matrices, BCPs can be
extracted. If there are more than two paths between the
two target nodes and the sub-graph also satisfies the
operand number limitation, it is a feasible BCP.

4.5. Third Phase: Sub-graph Enumeration

Each BCP is a feasible sub-graph, but there are still
many valid sub-graphs which are not BCP. For example,
in Figure 5 A, B, C and D compose a feasible sub-graph,
but unfortunately it is not a BCP. So besides BCPs,
there are still many sub-graphs need to be found out.

However, there has been no need to explore the entire
graph. Since the useful information of BCPs has been
extracted, we only need to find out the hidden
mathematical rules and calculate the feasible sub-graphs
instead of searching. This is the key technique that
reduces the execution time ofprogram.
We have summarized two cases that should to be

considered:
(1) BCP partition: For each BCP, if one of its subsets

does not contain both the source and sink nodes, it can
turn out to be a feasible sub-graph. So our main task is
to partition it into several regions and analyze the
number of these candidate subsets. This sub-process
involves several sophisticated implementations of
combinatorics related techniques. Suppose a BCP has p
paths, and there are qi nodes on path i, as shown in
Figure 6. In this figure, the points surrounded by circles
will be selected into the candidate subset.

For simplification we suppose that the selected nodes
must be connected. So when the source and sink nodes
are neither selected, the number of the candidate subsets
will be:

P P

(c~2+CI 2+ +c_ ) (2' -2 _1)(C? -2 +qi-2 +** Cqi -2 )=E(q-_
i=l i=l

And when only one node is selected from source or
sink nodes, the subset number is:

p

(q, -2+1)(q2 -2+1) .. (qp -2+1) = I(qi -1)
i=1

On the beginning part of the formula above, adding 1
in each bracket is out of the consideration that none of
nodes on this path is selected. Therefore, the total
number of candidate subsets for this BCP is

L(2qi -2 l,)+ 211(q,-1)-I
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(a) (b) (c)
Fig. 6. (a) Subset of BCP that contains neither source node
nor sink node; (b) Subset that only contains source node; (c)
Subset that only contains sink node.

(2) BCP combination: If two BCPs are combined
together, there may be more than one source node or
sink node, but it still can turn out to be a feasible sub-
graph, as shown in Figure 7. So we should combine the
connected BCPs and check the result out. In Figure 8,
the points surrounded by circles represent the selected
nodes. In two BCPs' combination, there must be one
public node selected during enumeration. Ifnone public
node is selected, there will be only one subset of the
small BCP and the enumeration will be repeated.

Without loss of universality, Let the path numbers of
PCB A and B be PA and PB, the node amount of each
path be qia and qjb respectively (1< i PA, 1< j< PB),
and the public nodes belong to both path kA and kB. We
assume that q > qk , and the number of feasible sub-

graphs is:
Result = Num(A) x 2(qk -1) x Num(B) + Subset(A)
where Num(A) represents the result of region A without
the public path kA, and Num(B) is for region B without
kB. For the public path, if its source and sink nodes are
neither selected, it results in repeated account.
Therefore, there must be two nodes selected: one from
source nodes on the public path and the other from sink
nodes. Also, 2(qkb -1) is just the number count for this

region. In addition, if the source and sink nodes of the
public path are both selected, all nodes ofBCP B should
be selected and it will be equal to pure subset ofBCPA.
The pure subset is then mapped to Subset(A) in the
formula above.

For the sake of simplicity, we assume the other nodes
on path kA lean to the selected public nodes and must be
all pitched on, such as the node a' in Figure 7(a). Then
considering the connectivity condition, we have

Num(A) = (qia_1)
1<i<PA and i.kA

Num(B) = f (qb-1)
1 <i<PB and j.#kB

Subtracting one in the formula is out of the
consideration both source node and sink node in this
path are selected.

Fig. 7. (a) An example of simple BCPs combination; (b) an

example of complex BCPs combination.

PA PA
Subset(A) = (2qi-2 _1) + 2J1 (q, - 1)

i=l i=l

.-.Result = 2(qk l)x (q _1)x (qb )
I<i<PA and i kA 1<i<PB and jk-B

PA PA

+ (2q,-2 -1)+ 2f1(q -1)-1
i=l i=l

When the target BCPs are complex, as shown in
Figure 7(b), we can first partition each BCP into smaller
ones and take calculations on the basis of those smaller
BCPs.

5. Experimental Results and Analysis

5.1. Experimental Results

To evaluate our BCP based algorithm, we implement
the algorithm with C++ and then take some tests on a

v880 machine running Sun Solaris. As we want to
verify it with graphs of various sizes, the input graph in
our experiment is random generated by TGFF [8].
Although randomly generated, the graph still can reflect
the data dependency features of programs and satisfy
our essential requirements, because it can generate all
types ofDAGs in the experiment.

To examine the execution time of the algorithm, we

take experiments with various node numbers from 10 to
200. Finally the time consumed is recorded in Table I.

For comparison, we also implement the algorithm
proposed in [3] under the TGFF input, and then
compare its running time with our algorithm. In Table I
the first column shows the DAG examples with
different node numbers. Then the second and third
columns present the numbers of BCP and feasible sub-
graphs. The fourth and fifth columns compare the
running time of previous algorithm with our proposed
algorithm. The last column provides the speedup in
execution time. In this experiment, the maximum input
and output degrees are assumed to be 3 and 2. From the
experimental results we can see that the proposed
algorithm has achieved a distinct reduction on the
execution time. And the larger the graph size is, the
better the speedup effect can be achieved.

5.2. Analysis
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There are two main reasons why our proposed
algorithm reduces the execution time:

(1) BCP exploration is utilized instead of sub-graph
direct exploration. BCP is more regular than sub-graph,
and can further be found out by an intermediate model
of the multi-stage graph that takes a series of
polynomial operations. This can effectively reduce the
calculation quantity. Its complicacy is O(n4+n2).

(2) Formulas are fully utilized when we perform BCP
partitioning and combination, and the complicity in the
algorithm is 0(1). Since most helpful information has
been extracted after BCPs' generation, we can directly
operate on these BCPs instead of exploring in the graph.

In addition, its integrality and validity can also be
ensured in two aspects:

(1) In BCP extraction sub-process, the adjacency
matrices between each two nodes on different stages are
considered, which ensures the found BCPs are integrate.

(2) In sub-graph enumeration sub-process, most
feasible sub-graphs are found through BCP partition
and combination operations. The advantage of BCP is
that it satisfies the convex condition directly, which is
just the kernel factor to reduce the execution time.

Finally, based on the experimental results, we
illustrate the trend on execution rate over graph size in
Figure 8. From figure 8 we can find that in the worst
case the exploration space is also exponential; however,
with the proposed algorithm the execution time has
been reduced distinctly.

6. Conclusion and Future Work

In this paper, instruction identification is first
formulated as a sub-graph enumeration problem under
multi constraints. Then, to reduce the execution time a
fast algorithm based on a novel BCP model is presented.

TABLE I

9 3 <0 >3
15 92 0.08 <0.01 >8
20 204 0.26 <0.01 >26
25 385 0.58 0.01 58
30 287 0.73 0.01 73
39 258 0.94 0.02 47
30 171 1.01 0.02 50.5
27 130 1.59 0.03 53
53 982 14.02 0.04 351
53 982 14.00 0.04 350
53 982 14.10 0.04 352.5
69 2493 50.89 0.05 1017.8

Fig. 8. Trend of execution time over graph size.

This algorithm consists of three phases: multi-stage
graph generation, BCP extraction and sub-graph
enumeration. Finally, through an experiment, the
feasibility of the novel algorithm is verified and the
execution time is reduced in a wide scope.

In the future our work will focus on the second sub-
problem, i.e. custom instruction selection, which deals
with the selection of an optimized instruction set under
multi metrics, such as power dissipation and execution
time.
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