
3124 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Parallel Stimulus Generation Based on Model Checking
for Coherence Protocol Verification

Kang Zhao and Wenbo Shen

Abstract— The complexity of the multicore communication protocols
makes it a huge effort to validate the corresponding register transfer
level (RTL). To achieve the high coverage of simulation, this brief
proposes a covalidation method to generate the RTL testbench based
on the model-checking technique. An object-oriented event-mapping
technique is proposed to transform the sequential traces created by
formal method to parallel RTL stimulus. A case study on the modified,
exclusive, shared and invalid protocol was performed and showed that
the covalidation method could save significant effort to create RTL
testbenches while maintaining high coverage.

Index Terms— Formal verification, model checking, system
testing.

I. INTRODUCTION

To design a multiprocessor system, it is a critical task how to
verify its coherence protocol. It involves proving that a protocol spec-
ification is following a desired memory consistency model, such as
sequential consistency. Two verification methods are commonly used:
1) formal verification and 2) simulated verification. The common
formal method to verify the correctness of protocols is the model
checking, which examines all the possible states of the systems. It is
a holistic and exhaustive solution. However, the construction process
needs more designer experience. The simulation-based verification is
developed widely and it is black-box. The designers develop a set
of stimulus to test the target system. The correctness of the system
depends on the quality of the stimulus set. The advantage is that it
does not require another functional model instead of the real system.
However, this method cannot ensure adequate coverage.

Top–down flow is the general choice to implement a multiprocessor
system. Designers first build a functional model to verify the key
behaviors, such as cache coherence. Model checking is usually the
choice in this step. Although no hardware (HW) details are touched,
this step is still important to reduce the design cycle. Then, the
register transfer level (RTL) is implemented and tested based on
the simulation. However, designers often face with three problems.
First, how to achieve higher coverage for simulation-based testing?
Here, we are not aiming at the circuit coverage as traditional testing
does, but rather at the coverage of essential behaviors as the design
specification requires. Second, how to ensure the equivalency between
functional formal model and implemented HW (RTL)? Third, because
the formal model has no implementation details and it checks only
the key behaviors, it is equal to an abstracted subset of the RTL.
That introduces the question of how to ensure the correctness of
the key behaviors in the RTL system. To deal with the problems,

Manuscript received October 28, 2013; revised August 11, 2014 and
October 14, 2014; accepted December 14, 2014. Date of publication
January 14, 2015; date of current version November 20, 2015. This work
was supported in part by Intel Labs, Shanghai, China, in part by the National
Natural Science Foundation of China under Grant 61106030, and in part by
the Tsinghua University Initiative Scientific Research Program.

K. Zhao is with Intel Corporation, Beijing 100013, China, and also with
the Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China (e-mail: kang.zhao@intel.com).

W. Shen is with Intel Corporation, Beijing 100013, China (e-mail:
zhaokang233@126.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2384040

this brief will integrate the formal verification and simulation.
The strategy is to generate stimulus from the formal model traces,
and the stimulus is used as the inputs for RTL simulation. The model
checking is usually used to enumerate all the possible traffic in a
finite state machine (FSM). The parallel traffic is represented with
different enumeration orders in the log of model checking. Its output
trace has the software (SW) feature, which is sequential. Due to
the gap between SW and HW, our focus is on how to get parallel
stimulus (HW) from sequential traces (SW). As a case study, this
brief proposes a covalidation method applied to verify the cache
coherence of a real multicore system. The stimulus is generated based
on formal verification results and achieve high coverage. To fill the
HW/SW gap during stimulus generation, an object-oriented event-
mapping technique is proposed.

The rest of this brief is organized as follows. Section II discusses
the related work. Section III presents the problem. Section IV
describes the details of the covalidation system. Section V describes
the mapping technique used in covalidation. Section VI presents the
experimental results. Section VII draws the conclusion.

II. RELATED WORK

Most previous works did not propose an entire integrated method
of the formal-based and simulation-based verification methods for the
coherence protocols.

First, some works support automatic partitioning for the target
system. The target design is partitioned to several parts. Some
are fit for the static formal verification, and the others for the
simulation [1]–[3]. For example, Li et al. [1] proposed a tool for the
complexity analyzer that is used during the partitioning. According to
different complexities under different constraints, the design is par-
titioned to several parts: 1) the equivalence check; 2) the simulation
verification; 3) the symbolic model checking; and 4) the property
check. After different types of verification, a coverage analyzer will
run and integrate the different verification results. The limitation of
such method is that it uses the advantages of different verification
methods but cannot avoid their disadvantages.

Second, some works use hybrid verification strategy. Random
simulate generation is implemented first, and then the formal
verification tool is used to inform the test bench writer missing
cases only for coverage analysis [4]–[7]. For example, Martyna [7]
proposed a method to fill the gap between the formal verification and
simulation for the wireless sensor network. It first selected a popular
test random generation algorithm and obtained the test bench. Then
the simulation results were measured using coverage analysis based
on the formal verification model. To verify the missing cases, the
simulate generator is improved and then better coverage results
are obtained. The limitation of such method is its long verification
period. During the testing process, the formal verification is used
only as the assistant approach to improve the simulation results.
If the simulation totally depends on the formal verification, this
verification period can be reduced.

Furthermore, Singh and Landis [8] proposed a real covalidation
method that integrates the formal verification and simulation. This
method is based on the model checking. It lists all the possible cases
of the modified, shared and invalid protocol manually, and obtains

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:48:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3125

Fig. 1. Covalidation bridges the formal verification and simulation.

the test bench based on the enumeration for all state combinations.
However, the target protocol is simple, and so the test bench is
summarized manually. Such an approach is not fit for the complex
multicore system. In addition, Goldberg [9] used satisfiability (SAT)
technique and bridged the simulation with formal verification. Its
strategy is to get the test set through SAT instead of random sample
generation. However, the coverage quality cannot be guaranteed.

To address this issue, this brief proposes a covalidation method.
It has two contributions: 1) it can generate testbenches with higher
coverage than the constrained random simulation and 2) it deals
with the gap seamlessly between the sequential formal traces and
the parallel RTL stimulus.

III. PROBLEM ANALYSIS

The nature of the covalidation process is to convert the
model-checking outputs to the RTL stimulus.

In fact, the formal model is a FSM that is represented with
high-level languages. It can enumerate all possible traffic in the FSM.
Although the formal model describes a parallel system, its output
traces are sequential. Instead, it uses different orders of enumerations
to denote the parallel states. For example, the states s0 and s1 have
no dependence and they could run in parallel. Then the output has
both the traces: 1) s0 → s1 and 2) s1 → s0.

However, the RTL implementations cannot identify such traces.
The real stimulus is described with HW description language (HDL)
and it has the parallel data structure, such as fork-join (a parallel
structure in Verilog). The focus is on how to achieve the seamless
conversion from the sequential events to the parallel RTL operations.
To clarify the mapping problem, we present a definition.

Definition 1: f = 〈 f1, f2, . . . , fm 〉 denotes a transaction, which
includes a sequence of events from f1 to fm ; s = 〈s1, s2, . . . , sn〉
denotes a list of RTL operations, from s1 to sn . F = { f } denotes the
formal verification results, and S = {s} denotes the simulation inputs.

The focus is on the mapping and translation from F to S. Since the
model checking output is sequential representation, the neighboring
events in f may run in parallel or in sequence when running in
the real HW. As a result, each event in f may be mapped to more
than one task. Next we build the covalidation system and propose
an object-oriented mapping (OOM) method to achieve the seamless
conversion.

IV. COVALIDATION SYSTEM

Fig. 1 shows the covalidation system. Its input is the formal
verification result, and its output is the set of stimulus for the
RTL validation. The formal verification uses a systematically exhaus-
tive exploration based on the model-checking technique, which can
cover all possible functional traces. This covalidation system is
applicable to any protocol validation for the concurrent platforms.
It includes three steps.

1) The high-level model is used to monitor and extract the
high-level checkpoints from the model-checking results
(Fig. 2). The high-level checkpoints are defined as key behav-
iors that are related to the RTL stimuli. They are collected with
a format of breath-first-search (BFS) tree by the monitor. Each
checkpoint corresponds to one state, and each state includes all

Fig. 2. High-level model.

Fig. 3. Translator implementation.

Fig. 4. Synthesizer implementation.

predefined variables with different values. Then all the cases
from root to leaf in this BFS tree is extracted.

2) The translator is used to translate the sequential high-level
traces to the parallel RTL traces, as shown in Fig. 3.
The high-level model is based on SW that is sequential with no
timing information, and the RTL is based on HW with cycle-
accurate information. So the key is how to achieve a correct
mapping. In the translator, an OOM method is proposed to
resolve this problem. The details are presented in Section V.

3) The synthesizer is used to capture the testing events from
the translator. It implements corresponding RTL accurate-cycle
tasks, as shown in Fig. 4. First, a template library is built
up corresponding to the key behaviors defined during the
model checking. Then the translator results are merged with the
templates for the simulation. The transition coverage is mainly
for RTL testing, and the functional coverage is for the model
checking. These two coverage are different. Because the model
checking can check only the functional key behaviors, the
generated RTL test bench can achieve high functional coverage
for those key behaviors.

We have implemented the covalidation system (Fig. 5). First, the
model checking is built using Murphi 5.4.9 [11]. All possible states
are represented with the BFS format and then each test case is
extracted. Second, the translator analyzes each coherent checkpoint
and they map to the corresponding RTL function calls. Third, we
have implemented all the RTL function templates corresponding to
the coherent checkpoints. Based on the template library, the test bench
is generated.

In addition, there is a limitation for this system. Because the
generated RTL test bench relies on the formal model, the bugs in

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:48:14 UTC from IEEE Xplore. Restrictions apply.

3126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 5. Covalidation system implementation.

the formal model will transfer to the final results. As a result, the
correctness of the formal model is the precondition.

V. OBJECT-ORIENTED MAPPING TECHNIQUE

This section presents the OOM technique in the translator (Fig. 3).
The motivation is to deal with the key differences between the
high-level traces from the formal model and the RTL function calls.
First, the high-level trace is sequential that uses different enumeration
orders to represent the parallel behavior, but the RTL function call
runs directly in parallel. Second, the high-level list uses sequence
order instead of timing information, but RTL list has the real timing
information. Therefore, the key is how to implement a seamless
translation from the formal model to RTL.

The general method to translate the sequential list to the
parallel RTL is the high-level synthesis (HLS) [13]. Its input is
the C/C++/SystemC program, and its output is the Verilog/VHDL
program. The traditional techniques of HLS are to extract the data
flow dependency of C inputs, bind each operation to the limited
HW units, and finally schedule those operations under multiple
constraints. However, the HLS technique is complex and it is still not
popularized to the market. Furthermore, our problem is much simpler
than the traditional HLS. First, the sequential traces have no complex
data dependencies like C/C++; instead, the dependence only exists
for each interface. In addition, the generated parallel lists are much
simpler than the HLS output. Since our focus is on the functional
coherence checking, the key is the running order of different tasks.
Therefore, a simple but efficient mapping method is proposed instead.

The OOM method is proposed to resolve this problem. Its strategy
is to ensure the sequential orders based on each interface of the
multiprocessor system. The behaviors between different interfaces
can be guaranteed by the model-checking rules. So the behaviors
between different interfaces are not considered in OOM. Here,
the interface means the coherence module of the multiprocessor,
which is used as different carrier during the formal model, such as
L1 cache, L2, and memory. Its correctness can be guaranteed by the
following theorems.

Theorem 1: The events during one interface run in sequential; and
the events between different interfaces run in parallel.

Proof: It is obvious that all events in one interface must run
in sequential, because the interface is only one. In multiprocessor
system, the data communication between different interfaces has no
conflict and it can run in parallel. For example, L2 and memory can
send data to each other in parallel. So the events between different
interfaces can run in parallel.

Theorem 2: The model-checking process can guarantee the running
orders between different interfaces.

Proof: This feature can be proved by the model-checking
definition. For each two events running in parallel between

Fig. 6. Examples for different types of mapping. (a) Direct mapping.
(b) Partly direct mapping. (c) OOM.

different interfaces, the model-checking results use different
enumeration orders to represent parallel behaviors.

Theorem 3: If the used RTL task library is the same, the set of the
generated stimuli is determinate.

Proof: Since the used RTL task library is the same, the imple-
mentation for each translated task will be the same. Then the focus
is on the running orders of tasks. As the example shown in Fig. 6(c),
it is obvious that the order in each segment (begin–end) is sequential,
but the order between segments is parallel. So the HDL tools (such
as Verilog Compile Simulator) will generate one correct stimulus
following such order constraint. Furthermore, many different orders
of stimuli will be generated due to the parallel feature. Different
permutation and combination will be able to cover all the cases. This
determination is based on lots of stimuli generation, and not only one
stimulus. So we can say that the set of stimuli is determinate.

In conclusion, direct mapping cannot get parallel information.
Instead, we must classify and group the events based on differ-
ent interfaces. This can both ensure the sequential order for each
interface, and also ensure the parallel feature between different
interfaces. However, the timing information cannot be created without

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:48:14 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3127

Fig. 7. Flow of the OOM method.

Fig. 8. Functional structure and coherence checkpoints.

foundation. In fact, the timing information is predefined in the
template library for the synthesizer according to the target design,
as shown in Fig. 4. The timing delays must be correlated with the
real requirements for the target design.

The details of OOM method is shown in Fig. 7. After defining the
checkpoints (line 1), each high-level trace from the formal model is
identified. What is more, they are classified with different types cor-
responding to different interfaces (line 5) and grouped together with
begin–end structure (line 8). Since the behaviors between different
interfaces are in parallel, the interface-based sets are grouped with
fork-join structure. The coherence is guaranteed for each interface.

This method has a limitation. Because the mapping process uses the
fork-join HDL structure, there are repeating test cases. To reduce the
redundant cases, the heuristic symmetry reduction technique is used
when generating traces with Murphi [10]. The details are omitted due
to space limitation.

VI. CASE STUDY

The testing target is a multicore system. This system includes
the Qemu simulator and the chipset components which have been
implemented on the Synopsys HAPS 51T emulation board. In this
system, the READ/WRITE commands are launched by the Qemu
simulator, and transferred to the chipset through the traffic dispatcher
and PCIe; the generated snoop signals will be sent back to the
Qemu in the opposite direction. The cache coherence protocol for
this system is modified, exclusive, shared and invalid (MESI) which
is commonly used for write-back caches.

We have implemented the formal model and the OOM method, as
shown in Fig. 8. It includes three interfaces: 1) cores (L1 cache);
2) L2; and 3) memory. The checkpoints include READ/WRITE

command, snoop (Snp), response invalid or modified (RspI/RspM),
and completion (Cmp) messages. The formal model based on model

TABLE I
RESULTS FOR THE FORMAL MODEL AND

GENERATED TESTING BENCHES

checking can explore all the possible cases for the MESI protocol,
and generate different types of coherence event lists (as the high-level
list shown in Fig. 6).

Since RTL running is in parallel, it may not be under the control
of the formal model traces if the translator uses a simple translation
rule. As shown in Fig. 6(a), after the read command, the order of
snoops and the responses may not be completely same as the formal
model orders. For example, the order may be: snoop1 → snoop2 →
snoop3 → response1 → response2 → response3; but the order may
also be: snoop1 → snoop3 → snoop2 → response2 → response1 →
response3. If the order in the HW is different from the formal results,
it will be far from our motivation. If we use Fig. 6(b) instead, it is
still not the best choice especially for the complex multitransaction
cases. Therefore, the mapping results using OOM in Fig. 6(c) can
ensure both sequential order in each interface and also the parallel
feature between different interfaces.

The statistical results are summarized in Table I, which contains the
statistical information of both the formal model and the covalidation
system. For the formal model, the variable storage is the definition
of the model checking, which denotes the maximum representation
space of the variable set; so the possible state number is the expo-
nential result of the former value. For the covalidation system, we
test only the multicommand in parallel with two different addresses.
It means that the cases of conflict addresses can be modeled. The
experimental results indicate that the formal-based stimulus genera-
tion method is feasible for the coherence protocol verification.

Since most related works are not real integration of the model
checking and the RTL simulation, the experimental comparison is
difficult. We select [8] as the target, because it is the first real
covalidation method and the test bench is also obtained via formal
verification. We have implemented the two methods proposed in [8].
The transaction count is selected as 200, and the number of cache
lines is 10. In addition, the method proposed in [8] cannot support
complex protocols, because it did not consider the event classification
based on interfaces. So we build its translator and FSM for the
MESI protocol by manual. The NorthBridge chipset implementation
for the Intel Quark Clanton processor is selected as the testing
circuit. Its input commands are generated from a Qemu simulator,
and the motivation of using this simulator is to upgrade core numbers
conveniently. The testing core numbers change from 2 to 12.

Fig. 9 presents the comparison of the transition coverage. It is
related to the percentage of test vectors generated automatically.
Both the directed random method and the constrained random
method are proposed in [8]. We can see that OOM could bring
relatively stable transition coverage, with about 2%–5% fall when
the core number increases; the worst case is the directed random
method, which brings about 5%–25% fall when the core number
increases. Furthermore, OOM can get higher transition coverage
for most cases, about 10% (maximum) higher than the constrained
random method and 30% (maximum) higher than the directed random
method. In addition, Fig. 9 shows that the transition coverage for the
two-core case is a little lower than the two methods in [8]. Since the

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:48:14 UTC from IEEE Xplore. Restrictions apply.

3128 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 9. Transition coverage compared with the two methods in [8].

two-core structure is the simplest case, the random techniques might
be able to cover more branches in the FSM, we suppose.

Except for the coverage, the advantage of OOM includes other
two points: 1) lower cost and 2) more protocol support. First, the two
methods proposed in [8] cannot do the translation from the sequential
traces to the parallel traces. Instead, it requires the redundant manual
translation. This is also an important reason that the two methods
in [8] cannot support complex protocols. OOM has implemented
an automated translator, which can bring a lower cost than the
methods in [8]. Second, OOM can support more complex protocols
than the methods in [8]. The reason is the same. Therefore, OOM
should be a good choice during the covalidation.

VII. CONCLUSION

This brief proposes a covalidation system to generate the parallel
stimulus for the multicore coherence verification. To achieve a
high coverage, the formal-based verification is integrated with the
simulation seamlessly. The OOM method is proposed to translate
sequence to parallelism. In future, we will focus on how to reduce
the huge state space and save the missing coverage when bug exists.

REFERENCES

[1] L. Li, M. A. Thornton, and S. A. Szygenda, “Integrated design
validation: Combining simulation and formal verification for digital
integrated circuits,” J. Syst., Cybern., Inf., vol. 4, no. 2, pp. 22–30,
2006.

[2] J. Jose and S. A. Basheer, “A comparison of assertion based formal
verification with coverage driven constrained random simulation,
experience on a legacy IP,” Wipro Technol., Bengaluru, India,
Tech. Rep. 18353, 2007.

[3] E. Segev, S. Goldshlager, H. Miller, O. Shua, O. Sher, and S. Greenberg,
“Evaluating and comparing simulation verification vs. formal verification
approach on block level design,” in Proc. 11th IEEE Int. Conf. Electron.,
Circuits, Syst., Dec. 2004, pp. 515–518.

[4] G. D. Cunningham, P. B. Jackson, and J. A. B. Dines, “Expression
coverability analysis: Improving code coverage with model checking,”
in Proc. Design Verification Conf., San Jose, CA, USA, Mar. 2004,
pp. 1–8.

[5] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a
coverage metric from a formal specification,” in Proc. 39th Annu. Design
Autom. Conf. (DAC), New Orleans, LA, USA, 2002, pp. 801–806.

[6] S. Tasiran, B. Batson, and Y. Yu, “Linking simulation with formal
verification at a higher level,” IEEE Design Test Comput., vol. 21, no. 6,
pp. 472–482, Nov. 2004.

[7] J. Martyna, “Linking simulation with formal verification and modeling
of wireless sensor network in TLA+,” in Computer Networks
ser. Communications in Computer and Information Science, vol. 79.
Berlin, Germany: Springer-Verlag, 2010, pp. 131–140.

[8] P. Singh and D. L. Landis, “Test generation for CMP designs,” in
Proc. 11th Int. Workshop Microprocessor Test Verification, Dec. 2010,
pp. 67–70.

[9] E. Goldberg, “On bridging simulation and formal verification,” in Proc.
9th Int. Conf. Verification, Model Checking, Abstract Interpretation,
2008, pp. 127–141.

[10] C. Norris Ip and D. L. Dill, “Better verification through symmetry,”
Formal Methods Syst. Design, vol. 9, nos. 1–2, pp. 41–75, 1996.

[11] CMurphi. [Online]. Available: http://mclab.di.uniroma1.it/site/index.php/
software/18-cmurphi, accessed Nov. 10, 2014.

[12] Synopsys Inc. [Online]. Available: http://www.synopsys.com, accessed
Nov. 10, 2014.

[13] P. Coussy, High Level Synthesis—From Algorithm to Digital Circuit.
Amsterdam, The Netherlands: Springer-Verlag, 2008.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:48:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

