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Abstract—To speedup the custom instruction identification
for the application specific instruction-set processor (ASIP),
this paper proposes a peeling algorithm. It starts with the
maximal valid pattern, and then gets a set of valid sub-patterns
through deleting the source and sink respectively. Furthermore,
a local priority is proposed for the exhaustive pruning. The final
experiment indicates a distinct speedup compared to the fastest
deterministic algorithm.

I. INTRODUCTION

Application specific instruction-set processor (ASIP) can
obtain a tradeoff between the efficiency and flexibility for
the embedded system design, which is designed facing the
challenges of both high efficiency and time-to-market pressure.
ASIP can improve the processor performance through the
custom instructions, which can be viewed as the special
hardware in the processor [1].

To implement the instruction-set extension (ISE), two sub-
problems should be solved: 1) custom instruction identifica-
tion, which enumerates all feasible subgraphs from the pro-
gram’s DFG (data flow graph); 2) instruction selection, which
selects an optimal instruction set under various constraints [2].
In this flow, candidate custom instructions are first enumerated
via the identification process, and then the instruction subset
which satisfies the performance/cost constraints will be se-
lected via the selection process. This paper will only focus on
the first sub-process: instruction identification. Its motivation
is to enumerate all the candidate custom instructions under the
architectural constraints. It is a subgraph enumeration problem,
and there are two choices for each node in the DFG: included
or not by the subgraph. Therefore, the search space will be
2n.

To settle this issue, researchers have proposed many iden-
tification methods. [3] used an interesting strategy based on
maze search. It started with a selected node, and then grew
it in a better direction. [4] proposed an algorithm based on
subgraph isomorphism. However, such methods can only get
segmental results, and may miss some better solutions. In
addition, [5] proposed an algorithm based on binary-decision-
tree (BDT). To reduce the space, the choices which violate the
constraints will be pruned in the BDT. However, it cannot deal
with large DFGs. Furthermore, Yu proposed a fast algorithm to
enumerate the connected [2] patterns. It defined upward and
downward corns, and obtained the feasible subgraphs using
corns’ combination. However, this algorithm often considered

a pattern more than once. To settle this issue, [6] proposed
an algorithm based on exhaustive pruning. It started with
an empty set and combined the other nodes under several
constraints. Once the constraints were violated, this direction
stopped.

However, the previous identification efficiency is still low
when enumerating all feasible subgraphs. Some work speed
up via strict constraints, some used heuristic methods to
get a subset result, and some only enumerated the maximal
patterns instead of all patterns. To settle these issues, this paper
proposes a peeling algorithm, which can enumerate all valid
patterns as the candidates with a high speed.

The rest is organized as follows. Section 2 presents the
problem formulation. Section 3 proposes the details of the
peeling algorithm. Section 4 verifies the algorithm with the
experiment. Finally, Section 5 presents the conclusion.

II. PROBLEM FORMULATION

The custom instruction identification can be formulated as
a subgraph enumeration problem. Let G(V, E) be a directed
acyclic graph (DAG), where V is the nodes which denote
operations, and E is the arcs which represent the data depen-
dencies. Custom instructions is the combination of primitive
operations. Since the primitive operation is represented as a
node, the custom instruction will be mapped to a subgraph.
Here we call the subgraph a pattern. Furthermore, the inde-
gree and outdegree of the subgraph will denote the operand
numbers of the custom instructions.

Definition 1: Let G′(V ′, E′) be a subgraph of G(V, E). If
∀v1 ∈ V ′ ∧ ∀v2 ∈ V ′ ∧ ∀v3 ∈ Path(v1, v2) → v3 ∈ V ′, then
the subgraph G′ is convex; otherwise, it is nonconvex.

Path(v1, v2) denote the nodes on the paths from v1 to
v2. The subgraph for the custom instructions must be convex
[6]. We will loose the I/O constraints, and only consider the
convexity and the connectivity constraints. In conclusion, the
instruction identification problem can be presented as:

Problem: Given a DAG G(V, E), find out all the valid
patterns {G′} exhaustively, which satisfy the two constraints
simultaneously: (1)G′ is convex; (2)G′ is connected.

III. PEELING ALGORITHM

A DFG example is shown in Fig. 1. This section will
propose the peeling algorithm based on this example.
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Fig. 1. Example of a DFG.

A. Overview

Let G(V, E) be a DAG. For the nodes u, v ∈ V , the
relations between u, v and G are:

Pred(G, u) = {v|v ∈ V ∧ Path(v, u) 6= ∅}
Succ(G, u) = {v|v ∈ V ∧ Path(u, v) 6= ∅}
Disc(G, u) = {v|v ∈ V ∧ Path(u, v) = Path(v, u) = ∅}

The DFG G may be disconnected. The precondition of the
peeling algorithm is a connected pattern, therefore, G must
be cut into several connected components, and we call each
connected pattern a cut of G.

Based on the above definitions, Fig. 2 presents an overview
of the peeling algorithm. Given a connected DFG G0, it will
be the initial graph during the partitioning. X is the track of
the priority list for pruning, which is initialized to be empty.
Finally the valid pattern list is returned via patterns.

B. Partition

The motivation of the partition function in Fig. 2 is to
divide the pattern into several subsets, and search for the valid
patterns recursively.

Theorem 1: G is a valid pattern. For ∀u ∈ G, Pred(G, u),
Succ(G, u) and Disc(G, u) are all convex patterns.

Proof: By contradiction, let Pred(G, u) be nonconvex. Then,
we can get that ∃a∃b∃c(a ∈Pred(G, u) ∧ b ∈Pred(G, u) ∧
c /∈Pred(G, u) ∧ Path(a, c) 6= ∅ ∧ Path(c, b) 6= ∅). Since
there is a path from c to b, c must also be the predecessor
of u, i.e. c ∈Pred(G, u). This conflicts with the precondi-
tion, and then Pred(G, u) must be convex. It is similar for
Succ(G, u). It is obvious that Disc(G, u) ∩ ({u} ∪ Pred(G, u)
∪ Succ(G, u))=∅. By contradiction, if Disc(G, u) is noncon-
vex, there must be a node x /∈ G, which is on the path
between two nodes in Disc(G, u). Then, G is nonconvex. This
conflicts with the definition of the valid pattern G. Therefore,
Disc(G, u) is also convex.

Based on Theorem 1, the graph can be partitioned into
at least three parts: Pred(G, u), Succ(G, u) and Disc(G, u).
Then, there is no need to examine the convexity. However, if
the current pattern is partitioned based on each node, there will
be many repeated enumerations during the recursive partitions.
Therefore, the source and the sink will be selected instead
of each node as the start for the partitioning. The successors
of the source and the predecessors of the sink will include

1. patterns⇐ ∅;
2. patterns.add(Ĝi);
3. X ⇐ ∅;
4. partition(Ĝi, X);
5. return patterns;

Fig. 2. An overview of the peeling algorithm.

other nodes’ successors and predecessors. In the following the
source and sink nodes are called peeling node.

Theorem 2: Let G be a valid pattern, and u be its peeling
node. The subgraph G/{u} is denoted as Dele(G, u). Then,
Dele(G, u) is a convex pattern.

Dele(G, u) = G− {u}
=

{
Succ(G, u) ∪Disc(G, u) if u ∈source(G)
Pred(G, u) ∪Disc(G, u) if u ∈sink(G)

Proof: Let u be the sink node of G. Then, Dele(G, u)=
Pred(G, u)∪Disc(G, u). Since Pred(G, u) and Disc(G, u) are
both convex (Theorem 5), we only need to prove that all
the nodes on the path “x → y” belongs to this subgraph
(x ∈Pred(G, u)∧ y ∈Disc(G, u)). By contradiction, if ∃z(z /∈
Dele(G, u) ∧ (there is a path “x → z → y”)), Dele(G, u)
will be nonconvex. According to the definition of Disc(G, u),
z 6= u and z /∈ G. Based on Definition 1, z will bring G into
nonconvex. This is a contradiction. Therefore, Dele(G, u) must
be a convex pattern.

In conclusion, the current pattern can be partitioned via
deleting the peeling nodes, as the algorithm shown in Fig. 3.
The first step is to find the peeling nodes and delete them
respectively. Since Dele(G, u) may be disconnected, function
disconnected is used to examine the generated Dele. Further-
more, a priority is defined to avoid repeated enumeration. The
function violate priority is to examine whether the current
peeling node violates the priority or not. After the partitioning,
the priority list X will be updated according to the set of the
peeling nodes, and the generated Deles will be partitioned
recursively under the new priority X ′. This partitioning seems
to be a peeling process, so its name is peeling algorithm.

Although this algorithm can enumerate all valid patterns,
it may bring repeated enumerations. As the example shown
in Fig. 4, subset {3, 4} can be generated through the path
(a)(c)(f), and also the path (a)(d)(g). Except for the paths
starting with (a), {3, 4} can also be generated starting with (b),
because {3, 4} is also the subset of {1, 2, 3, 4}. Therefore, a
priority in the partition function is proposed to avoid repeated
enumerations.

C. Pruning

As shown in Fig. 4, (c) and (d) have the same subset {3,
4}. How to avoid such repeated enumerations? For the pattern
(d), its only “advantage” is that (d) has {2} but (c) does not.
Therefore, if (d) deletes {2}, it will have no “advantage” and a
repeated enumeration generates. Such comparison only exists
between the brother patterns which have the same parent.
Under this strategy, a local priority is proposed.
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partition(G,X)
1. if(G = ∅) return;
2. P ⇐ source(G) ∪ sink(G);
3. for(each node u ∈ P )
4. if(violate priority(u,X)) or disconnected(G, u)
5. P ⇐ P − {u};
6. else
7. patterns.add(Dele(G, u));
8. for(each node u ∈ P )
9. X ′ ⇐ change priority(P, u, X);

10. partition(Dele(G, u), X ′);

Fig. 3. Algorithm of the partition function.

Definition 2: Let u and v be two peeling nodes for the
pattern G. If Dele(G, u) is enumerated earlier than Dele(G, v),
the priority of u will be higher than v. This order is named
as the local priority.

The earlier a peeling node is deleted, the higher its priority
will be. As the example shown in Fig. 5, which presents the
spanning tree for the DFG in Fig. 1. In this tree, each valid
tree node is distributed with a number, and this number means
the tracking order. This tree is partitioned into many levels,
and the tree nodes on the same level have the same length.
For example, the lengths for the nodes (3) and (4) are both 4.
Here, the path in the spanning tree means the one from the
root to the leaf.

Theorem 3: The local priority has three characters: 1) the
partial order; 2) the local effect; 3) the genetic.

Proof: 1) Since the priority is decided by the enumer-
ation order, priority(a) > priority(b) → time(a) <
time(b). Then, if priority(a) > priority(b) ∧ priority(b) >
priority(c), we can get time(a) < time(b) < time(c) and
priority(a) > priority(b) > priority(c). As shown in Fig. 5,
the order of the peeling nodes are “V 1 → V 2 → V 4 →
V 5” on the level 1, so priority(V 1) > priority(V 2) >
priority(V 4) > priority(V 5). 2) Since the priority order
focuses on the current pattern, it only appears between the
peeling nodes of the same pattern. In the spanning tree, this is
represented that the priority only appears between the brother
nodes with the same parent. As shown in Fig. 5, the priority
order exists between the tree nodes (5), (6) and (7), because
they have the same parent (1). 3) The genetic character means
that priority(u1) will be higher than any successor nodes of
u2 if priority(u1) > priority(u2). For the node x in the
spanning tree, its subtree means deleting other nodes after
deleting x. If priority(y) > priority(x), the subtree of y will
be enumerated earlier, and y will be deleted earlier than x. If y
is in the subtree of x, it means that y will be deleted later than
x, which will generate the same enumeration. As shown in
Fig. 5, since priority(V 1) > priority(V 2) > priority(V 4)
in the subtree of the tree node (15), the candidate {V 3, V 5}
will be deleted. Therefore, the priority is genetic.

Theorem 4: The pruning based on the local priority can
avoid repeated enumerations exhaustively.
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Fig. 4. Illustration for the peeling process.

Proof: By contradiction, let u and v be two nodes with the
same value in the spanning tree. Since different levels have
different lengths, u and v must belong to the same level in the
spanning tree. We can refer to the example in Fig. 5. There are
two relations with the positions of u and v: 1) u and v have the
same parent; 2) u and v have different parents. For the case
1), based on Definition 2 the repeated enumeration does not
exist; for the case 2), although u and v have different parents,
they must have the same predecessor p. If the values of u and
v are the same, the paths “p → u” and “p → v” must be the
same. The only difference between the two paths is the erasing
order. If u′ is deleted earlier than v′ on the first path, v′ will
appear earlier than u′ on another path. Based on Definition
2 and Theorem 3, the second path should be deleted. As a
consequence, the repeated enumeration disappears. As shown
in Fig. 5, there are two paths J and K with the same value
at level 3. The path y will be deleted due to the V 1’s high
priority. This is just the genetic character of the local priority.

IV. EXPERIMENT

To verify the feasibility of the peeling algorithm, we have
implemented it in C++ on a Linux machine. This machine has
an Intel Xeon 3-GHz CPU and 4-GB memory, and the OS
is Red Hat Enterprise Linux AS release 3. The implemented
programs were compiled using GCC 2.96 with option -03.

The MESA benchmarks from MidiaBench [7] are used
as the inputs. Table I presents the functions of MESA. The
first and second columns denote the IDs and names of the
DFGs, and the next two columns present the numbers of
their nodes and edges. Those DFGs were represented with
DOT format, therefore, a DOT compiler was implemented to
identify and import those graphs. The back-end focused on the
identification time, which was measured using the standard
C++ function clock() and the macro CLOCKS PER SEC.
We will compare the peeling algorithm with [6], which has
achieved the same exhaustive enumeration. Since it used the
I/O constraints for pruning, such constraints were removed for
an equitable comparison. The algorithm in [6] (“CH”) is used
to compare with the peeling algorithm (“PE”).

In Table I the total number of valid patterns are summarized
in the fifth column. To compare the efficiency of those algo-
rithms, the sixth and seventh columns present the identification
time and the speedup respectively. The precision floating-point
is three. Therefore, if the identification time is 0.000s, it means
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Fig. 5. The enumeration and pruning details for the example in Fig. 1.

TABLE I
EXPERIMENTAL RESULTS AND COMPARISON.

Identification time (s) Speedup (×)ID MESA Functions Node Edge pattern
CH PE PE/CH

1 Horner Bezier 18 16 34 0.010 0.000 11.11
2 Feedback Points 53 50 114 0.030 0.000 33.33
3 Invert Matrix 333 354 9786 122.870 1.980 62.06
4 Smooth Triangle 197 196 329 0.840 0.010 84.00
5 Matrix Multiplication 109 116 625 0.590 0.040 14.75

that the time is too short to represent, and we will use the value
of 0.0009 to calculate the speedup. Table I indicates that PE is
faster than CH; however, the speedup effect is not super. The
reason is that they both used the predecessor and the successor
to satisfy the convexity constraint. However, CH starts the
exploration with an empty set, and grows the pattern through
combination. Instead, PE starts with a maximal valid pattern,
and gets the smaller patterns through partitioning. The start of
CH is arbitrary, which may bring a larger search space for
the identification; however, the start of PE is easier because
the maximal valid pattern is fixed. Therefore, PE can achieve
a faster identification speed than CH .

V. CONCLUSION

This paper proposes a peeling algorithm for the custom
instruction identification. This algorithm proposes a local
priority for an exhaustive pruning. The experiments indicate
that the peeling algorithm can speedup the identification and
can identify the custom instructions quickly.
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