
A Clustering ILP Model for Fast Instruction Selection
in Embedded Applicated Specific Processor Design

Kang Zhao and Jinian Bian
EDA Lab, Dept. of Computer Science & Technology

Tsinghua Univ., Beijing 100084, China, +86-10-62785564

Abstract Recently to face the challenges of high efficiency
and time-to-market pressure, instruction set auto-customization
for application-specific instruction-set processors (ASIP) has
become an attractive technology. In this process how to select an
optimized instruction set in a short time is crucial to the whole
synthesis of ASIP. To address this issue, we formulate the
instruction set selection problem with a clustering integer linear
programming (ILP) model under multi-constrains, and present a
fast cutting plane algorithm to resolve this problem. Finally, the
proposed model and algorithm are evaluated through a case
study on FIR filter applications.

Keywords Instruction selection, cutting plane algorithm,
ILP, ASIP.

I. INTRODUCTION
In the era of high-performance, low-power and cost-

effective system, automatic customization to the application
requirements is the key to achieve fast turn-around time in a
competitive market [1]. Application Specific Instruction-set
Processor (ASIP) is a processor designed for a set of particular
applications, which provides a good tradeoff between
efficiency and flexibility [2]. To face the challenges of high
efficiency and time-to-market pressure, customizable ASIP has
become an attractive technology.

In ASIP design, specific instruction set customization plays
an important role in the whole process. Selecting an optimal
instruction set is crucial to enhancing the performance of ASIP.
However, due to the complexity of the problem, selecting a
high-performance instruction set is more difficult.

Recently, a large body ofwork has been done on instruction
selection. Alauddin Alomary describes a formal method that
selects the instruction set of ASIP to maximize the chip
performance under constrains of chip area and power
consumption [3], in which instruction set selection problem is
first formulated with integer linear programming (ILP) and
resolved by using a branch-and-bound algorithm. Similarly, in
the CECS of University of California, Jong-eun Lee and Nikil
D.Dutt also formulate the instruction selection problem with
ILP [4]. To reduce the complexity, they divide the instruction
set into three parts and present an effective heuristic algorithm.
In [5] novel algorithms addressing application specific
instruction compilation are presented and the problem is
formulated as a graph covering under multi-constrains, but in

essential the instruction selection in the whole process is also
settled with integer linear programming.

However, there are still two intrinsic limitations for those
techniques mentioned above. First, the instruction selection
problem is formulated with ILP without considering the
inherent functional relations between instructions. Thus, it is
relatively difficult to find a fast method to resolve this problem.
Second, because the exploration space of this problem is very
large, the proposed algorithms are most time-consuming. To
increase the execution speed, several heuristic algorithms are
even presented in those papers.

To solve this problem, we proposed a novel fast method.
First, we formulate the instruction selection problem with a
clustering ILP model under multi-constrains, which considers
the functional relations between instructions adequately.
Second, a fast cutting plane algorithm is presented to settle the
clustering ILP model, which is demonstrated to be efficient
through a case study on FIR applications.

The rest of the paper is organized as follows. In Section 2,
the background of instruction selection problem is first given.
And then, to formulate this selection problem, in Section 3 a
clustering ILP model is described in detail. In Section 4, a fast
cutting plane algorithm based on ILP is then proposed to solve
the selection problem. Finally, experimental results obtained
from a case study on FIR applications are presented in Section
5. The last section draws the conclusion.

II. BAKEGROUND
Instruction selection process plays an important role in the

whole instruction set synthesis for ASIP design.
Figure 1 is the instruction set synthesis framework we

utilize, which starts with the behavior specification of
applications and gradually moves the design to lower levels of
implementation. First the application benchmarks with C
language are compiled into an intermediate specification
HCDFG (Hierarchal Control Data Flow Graph). And then the
initial instruction set is defined via functional mapping from
operations in HCDFG to a pre-designed instruction library. To
get an instruction set with better performance, instruction
selection process is utilized to extract a best sub-set from the
initial instruction set. Finally, through a partial tuning we can
achieve a further improvement and get the final instruction set.

1160

1-4244-0387-1/06/$20.00 (©2006 IEEE

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:39:39 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Framework of instruction set synthesis

In this paper we will focus on the formulation and solutions
for the instruction selection process from the initial instruction
set to the final instruction set.

III. A CLUSTERING ILP MODEL FOR INSTRUCTION
SELECTION

Instruction selection is an optimization problem. As
explained previously, it accepts the initial instruction set from
functional mapping process, which only ensures the
functionality completeness of the instruction set and results in
many redundancies to be filtrated. In the initial instruction set,
there may be functional overlapping between two instructions.
So selecting an instruction set with both complete functionality
and low performance is necessary.

For an optimization problem, it is the first task to model the
behavior with mathematical tools. Generally an optimization
problem contains a design space and a metric measuring the
quality of trial solutions. The space is designed as a three
constrains with execution time, hardware area and power
consumption. Without loss of generality, we assume I= {ul,
U2,. . ., un4 is the initial instruction set and I -{ vI, v2, .V..vt } is
the optimized instruction set, so we have:

I n (1)
|I |t (2)

We define the constraint of the maximum hardware area
Amax and the area account function area(u,) on the instruction
ui, then we have this inequation:

n
L w, x area(u) < Aax (4)
i=l

w, =0 or I O<i<n
where w, is a binary variable which is '1' if instruction u, is

selected and 'O' if not selected. Then the instruction selection
problem can be formulated with an integer linear
programming as follows:

Figure 2. An example of functional dependency between instructions

Notations:
I: Initial instruction set
II*: Selected instruction set

* G: Mapping relationship from one set to another
* T: Total execution time
* P: Power consumption

Problem: Given an initial instruction set I, and constrains
(3) and (4) mentioned above, generate a mapping G from I to
the final instruction set I*, so that the each function containing
in I is covered and the total execution time T and power
consumption P is minimized.

However, because the design space of all instruction set is
very large and difficult to conceptualize, its scope is
intentionally limited according to the specific applications and
experimental requirements. Therefore, we utilize an idea of
functional cluster and make an improved alteration on the ILP
formulation. The instruction subset with same functionality is
then used as the minimal unit instead of only one instruction.

We assume F= {F, F2, ..., Fr} is the functionality set and
it satisfies that arbitrary two elements have no intersections,
which can be formulated as FnP= (ifj and I<ij5m).
Based on this assumption, we define ud is thej instruction in
F:

F ={F1 UF2U.UFm}|F|F = m
Fl='Ul U2 U3, --¢n I |F' =n,
F2 2 3 n2 F2 n2 (5)

Fmm {m,um,um,.*,,un} Fnm|n

F' n F; = q) (i # j, i,j E[l,m])
Actually, there are functional dependencies among those

instructions, especially between the atom instructions and the
complicated instructions. For example, as shown in Figure 2,
MUL function can be achieved with ADD instruction through
software techniques, and MUL ADD instruction also can be
obtained through the coupling of ADD and MUL. Whether
using the instruction or the software techniques through other
instructions is decided by the statistical analysis and the special
application constrains. Accordingly we define the function
U(F) as the functional mapping and preprocessing result on the
set F

Here, we use a new binary variable xi instead of w,. When
the instruction Ulj is selected, the value of x'j is 1. So we have
the following relations:

APCCAS 2006 1 161

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:39:39 UTC from IEEE Xplore. Restrictions apply.

JU(F)l ni
t=iixj =Oorl |U(F)|<m

i=l j=l

(6)

Finally, for the sake of functionality completeness of the
final instruction set, at least one instruction should be selected
in each F. With this additional constrain, we formulate the
instruction selection problem with a clustering ILP model as
follows:

|U(F)| ni
Min: , ,xj1x f ' x{q time(u') + (1- q)power(u')}

i=11=1

Subject:

U(F)l n

Z E Xi x area(u) < Arxiiji~~~~~i=l j=l
|U(F)| ni

t < n > ZX<n
i=l j=l

i;(1;Ij(F)I A ,xa 21)
ViKI1<i< JU(F)l A Z,X'1>

(7)

X O orl
Where fj is the using account of the instruction uij in the

benchmarks, q represents how much proportion timing
occupies compared to power, and time(u') and power(u) stand
for the calculation functions for the execution time and power
consumption of instruction uj.

Analysis: For the previous ILP definition, the exploration
space is obviously 2n. However, due to the clustering
constraint, the design space of the improved ILP is reduced
greatly:

*. n = C+ n2+**..x+ Cn

.C1 2 l1xC12 l x * x Cl 2nlu(F)(l

n 2* nl)l U(F

<(nl. n2 ... nu)2
n1+n2-1+ +nl-

(nl n2 *...m)21nm
*[2 (nl- n2 .nnm)2n] 2= 1-(nl n2 nm) 2n (8)

Therefore, the exploration space has been reduced by a
percentage of (l-(nln2..nm)2).

IV. FAST CUTTING PLANE ALGORITHM
We have formulated the instruction selection with a

clustering ILP model. However, because the exploration space
of instructions is very large, ordinary solutions are
complicated and time-consuming to this problem. To increase
the execution rate of instruction selection, we present a fast
solution based on the Gomory cutting plane algorithm.

First, we broaden the integral constrains and get the
corresponding linear programming problem PO, as shown
below. So we can solve P through Po, which is just the

motivation of cutting plane algorithm. According to the
analysis of the difference and relationship between P and Po,
we have those conclusions:
+ The area of the feasible results for problem P is the subset

ofthe one for problem PO.
+ If there is no feasible result for PO, no results for P exist.
+ If the feasible result for PO is integral, so it is also for P.

Mm cx Min cTx
P

s.t. Ax=b s.t. Ax=b
PA x>O r ~p°0 x>O

x 0, 1 O<x<1

Then, the novel algorithm will be explained in detail. Its
main differences from Gomory cutting plane algorithm is that
it utilizes rounding method to increase the execution speed and
uses the idea of branch and bound to avoid the accidental
instances, as shown in Figure 3.

After the ILP problem P is converted to a LP problem Po,
we can solve it with appropriate algorithms and tools for LP
problem. If there is no feasible result or Po is illimitable,
according to the conclusions mentioned above, problem P has
no feasible results; if one answer is just integer 0 or 1, it will
also be the feasible result of P; if the answer is very near to 0
or 1 and the gap is under a sufferable horizon, we will round it
as the feasible result of P; for most non-integral results, our
strategy is to cut the useless space of variables which have
been confirmed to be feasible results of P, and get a new LP
problem P1, then go back to the original step and solve the
problem P1. In this process, if all the results of problem Po are
non-integral, the whole program will be trapped into an
endless loop. Therefore, for this instance we utilize the idea of
branch and bound, confirm an arbitrary variable to be 0 and 1,
run respectively and make a final comparison with the feasible
results.

APCCAS 20061162

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:39:39 UTC from IEEE Xplore. Restrictions apply.

For a general ILP problem, it will be very fast when
resolved without integer constrains. Therefore, based on the LP
problem, the new algorithm limits the exploration space
through cutting the confirmed feasible results and speeds up the
execution rate.

V. A CASE STUDY ON FIRAPPLICATIONS AND
EXPERIMENTAL RESULTS

To evaluate the proposed model and algorithms, we select a
set of FIR filter applications as the test bench, which is a DSP
core named cfJir [6] and is programmed with C. This project
contains five benchmarks, and each file has three parameters.
For example, fir(12,16,10) represents that the filter order of
delay taps is 12, the input precision is 16 and the coefficient
precision is 10. In the following content we will continue to use
this notation.

Table 1. Pre-profiling results for FIR benchmarks
+ >> & >= > =brch loop

fir(7,16,16) 140 85 96 20 6 62 79 13 970 40 199 24 128 115

fir(12,16,10) 205 184 167 31 26 101 252 17 1512 60 333 33 202 191
fir(24,8,8) 175 80 259 56 26 111 359 2 2230 108 426 30 3 72 312

fir(24,16,16) 446 255 309 56 26 209 505 30 3123 108 672 58 372 362

fir(33,16,16) 608 345 420 74 36 287 687 39 4247 144 924 76 500 491

Percentage 6.8%. 3.8% 4.7% 0.8% 0.4% 3.2% 7.7% 0.4% 47.8% 1.6%, 10.4°/ 0.9%, 5.6% 5.5%

First, we compile those benchmarks into an intermediate
specification and then make a statistical analysis on it. Part of
the profiling results on the FIR benchmarks are summarized in
Table 1. These statistics illustrate the utilized numbers of
operations and the lowest row represents the utilization
percents for each operation. Figure 4 also shows those
relations with illustration. From it we can find that addition
and multiply are the most frequently used functions in data
operations, and SRL and AND are two functions in logic
operations. Therefore, the complicated instruction MUL ADD
is adopted to speed up the execution rate.

Then we utilize the software GLPK which contains a free
package for the large scale linear programming problems and
evaluate our instruction selection algorithm. Here three small
instruction libraries are used to do experiment, and the final
results are summarized in Table 2. The first column represents
selected instruction numbers, total delay, module area and
leakage power for selected instructions. The lowest row
compares the execution time with the previous method and the
proposed method. From the final experimental results we can
find that by using the proposed clustering ILP model it
achieves a distinct reduction on the execution time.

fi r(7, 16, 16)

f r(12, 16, 10)

f r(24, 8, 8)

f r (24, 16, 16)

f r (33, 16, 16)

* SLL
o SRL
* AND
Clvide
Subtract

* Add
M3sl ti pI y

100 200 300 400

Figure 4. Compare for utilization frequencies of integer instructions

Table 2. The final results with proposed model and method
Instruction libraries Small Lib. Bigger Lib. Extended Lib.
Selected instructions 44 /129 63 /180 91 /261

Total delay 526.300049 909.500000 1239.200195
Total module area 349.000000 583.000000 703.000000

Total leakage power 3539.000000 3138.500000 2328.000000
Execution Previous 3 9 28
Time Proposed < 1 2 7

Improved > 66.7% 77.8% 75.0%

Future work will focus on the automated coupling of the
complex instructions. This issue will be the emphasis in the
future research.

REFERENCES

[1] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. lenne and N. Dutt,
"Introduction of Local Memory Elements in Instruction Set Extensions",
Design Automation Conference (DAC '04), June 2004.

[2] Manoj Kumar Jain, M. Balakrishnan, Anshul Kumar, "ASIP Design
Methodologies: Survey and Issues", Proceedings of the 14th
International Conference on VLSI Design (VLSID '01), p.76, 2001.

[3] Alomary,A.; Nakata,T.; Honma, Y.; Imai,M.; Hikichi, N. "An ASIP
instruction set optimization algorithm with functional module sharing
constraint". Proc. ICCAD-93, 7-1, Nov. 1993

[4] J. Lee, K. Choi, N. Dutt, "Automatic Instruction Set Design Through
Efficient Instruction Encoding for Application-Specific Processors". TR
02-23, August 8, 2003.

[5] Jason Cong, Yiping Fan, Guoling Han, Zhiru Zhang, "Application-
Specific Instruction Generation for Configurable Processor
Architectures". Twelfth International Symposium on Field
Programmable Gate Arrays, Page 183-189, 2004.

[6] Free open source IP cores and chip design:

VI. CONCLUSION
In this paper, we first formulate the instruction set selection

problem with a clustering ILP model and then present a
corresponding fast cutting plane algorithm to achieve a fast
instruction selection. Finally, through a case study on FIR
applications the feasibility ofthe proposed model is verified.

APCCAS 2006 1163

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 07:39:39 UTC from IEEE Xplore. Restrictions apply.

