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Abstract—IR Drop analysis for on-chip power grids (PGs) is
vital but computationally challenging due to the rapid growth in
the integrated circuit (IC) scale. Traditional numerical methods
employed by current EDA software are accurate but extremely
time-consuming. To achieve rapid analysis of IR drop, various
machine learning (ML) methods have been introduced to address
the inefficiency of numerical methods. However, the issue of
interpretability or scalability has been limiting practical appli-
cations. In this work, we propose IR-Fusion, which aims to
combine numerical methods with ML to achieve the trade-off
and complementarity between accuracy and efficiency in static IR
drop analysis. Specifically, the numerical method is used to obtain
rough solutions and ML models are utilized to improve accuracy
further. In our framework, an efficient numerical solver, AMG-
PCG, is applied to get rough numerical solutions. Then, based
on the numerical solution, the fusion of hierarchical numerical-
structural information representing the multilayer structure of
the PG is employed, and an Inception Attention U-Net model is
designed to capture details and interaction of features at different
scales. To cope with the limitations and diversity of PG designs,
an augmented curriculum learning strategy is applied to the
training phase. Evaluation of IR-Fusion shows that its accuracy
is significantly better than previous ML-based methods while
requiring considerably less iteration on solver to achieve the same
accuracy compared with numerical methods.

I. INTRODUCTION

The on-chip power grid (PG) transfers voltage and current to
each working cell, and IR drop analysis involves obtaining
the voltage drop caused by parasitics between the power pads
and cells [1]. Ensuring the worst-case IR drop values are
within specified limits is essential, which prevents perfor-
mance degradation, increased power consumption, and circuit
instability [2], [3]. As chip integration density increases,
traditional analysis methods face significant computational
challenges due to the resolution of a high-dimensional linear
equation [4]. IR drop analysis becomes very time-consuming
in industrial-scale designs, often requiring hours or days.
Therefore, rapid and accurate early IR drop analysis is needed
to optimize the design cycle.

Many numerical methods have been proposed for this
process, including direct solvers, iterative solvers, and other
specialized solvers. Direct solvers such as KLU [5] and
Cholmod [6] are usually employed for transient simulation
with a constant time step. Iterative solvers are usually devel-
oped for static analysis utilizing the Krylov subspace method
[7], [8], random walk [9], and others. Specialized methods are
also proposed including spatial locality methods [10], hierar-
chical and macromodeling methods [11], domain decomposi-
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tion [12], and some matrix algebraic methods [13]. To consider
the similarity between the power grids and the discretiza-
tion of Laplacian equations, while further handling irregular
power grids, algebraic multigrid (AMG)-based techniques and
solvers [14] are also developed. Particularly, PowerRush [15]
is an efficient IR drop simulator utilizing the linear solver,
named algebraic multigrid preconditioned conjugate gradient
(AMG-PCG). Recently, PowerRChol [16], based on the RChol
algorithm, achieves faster PCG iteration convergence in PG
analysis. These numerical methods provide golden results
and are applied to contemporary EDA tools. However, for
early industrial-scale designs, numerical methods remain time-
consuming and memory-consuming, limiting their benefits.

To address inefficiencies, machine learning (ML)-based
methods have been proposed as a promising alternative for
accelerating IR drop analysis. IREDGe [17] employs a U-
Net architecture within its EDGe network to transform power
and current images into a static IR drop image. MAVIREC
[18] uses a 3D U-Net model for IR drop prediction em-
phasizing dynamic IR drop problems and is also applicable
to static IR drop analysis. IRPnet [19] utilizes a pyramid
model to capture global features and introduces a loss function
with Kirchhoff’s law constraints to align predictions with
circuit characteristics. Recent approaches like PGAU [20] and
MAUnet [21] incorporate attention mechanisms to enhance
IR drop prediction by focusing on hotspot regions. Although
these models improve the accuracy of hotspot identification,
they still face the problem of insufficiently fine modeling
granularity. Additionally, these methods struggle with issues
related to model interpretability and generalizability, which
can limit their adoption in practical design environments.

Numerical and ML methods have their strengths and weak-
nesses respectively. The question arises: can they be combined
for a better trade-off in speed, accuracy, and scalability?
The answer is yes. Most numerical methods solve large-scale
linear systems iteratively, where more iterations yield greater
accuracy but require longer runtime. By integrating ML, we
can perform fewer iterations to obtain a rough solution and
refine it using ML. This fusion enables a better understanding
of complex physical or geometric systems, while offering more
fine-grained and efficient modeling.

In this work, we propose a fusion framework, IR-Fusion, to
achieve better performance in static IR drop analysis. First,
the AMG-PCG solver is used to solve the system matrix
rapidly, performing a small number of iterations to obtain
rough numerical solutions. Furthermore, we fuse hierarchi-



cal numerical-structural information based on the multi-layer
structure of PGs. Indeed, each layer of features needs to
interact, and features at different scales within the same
layer capture distinct information. Therefore, a fixed-scale
convolution kernel limits scale flexibility. To address this, we
incorporate the attention gate, the Inception module, and the
convolutional block attention module (CBAM) within the U-
Net architecture to highlight details across multiple scales
and capture multi-layer connections enhancing the model.
Moreover, due to the large variations in different and limited
PG designs, data augmentation and curriculum learning are
used to enhance model performance and scalability.

The main contributions are as follows:
• We propose IR-Fusion, an innovative fusion framework

that incorporates numerical solutions to enhance ML
methods for static IR drop analysis, providing an effective
trade-off between accuracy and efficiency.

• We fuse hierarchical numerical-structural information to
represent the influence of different metal layers of PG
and propose an Inception Attention U-Net to capture
hierarchical information of features from diverse scales
and directions, thereby improving the performance.

• Considering the limitations and diversity of PGs, we em-
ploy augmented curriculum learning during the training
phase to enhance the scalability of the ML model.

• Experimental results show that IR-Fusion outperforms
SOTA ML baselines, substantially improves the F1 score,
and reduces MAE and maximum IR drop error (MIRDE),
critical metrics in the industry. Also, it has better accuracy
and efficiency compared with the numerical method.

II. PRELIMINARIES

A. Power Grid and IR Drop Analysis
In very large-scale integrated (VLSI) circuits, the design of PG
includes analyzing and optimizing the on-chip metal network
for power distribution. This process requires balances - ensur-
ing the network delivers sufficient and reliable performance
while minimizing resource consumption [2]. Typically, PG is
designed from the top-level metal layer, which is connected
to the power supplier, down through inter-layer vias, and
finally to the active cells, as shown in Fig. 1. The current and
resistance distribution in the upper layers influences the lower
layers. Therefore, it is necessary to consider the characteristics
of each metal layer in the PG.

IR drop analysis is critically important as it represents a
fundamental step in evaluating the chip’s power integrity. Due
to the effects of the parasitic within the PG, particularly the
partial voltage caused by the resistance of metal interconnects,
the voltage drop is induced between the power pads and the
cells as current flows through the PG. Consequently, it is
essential to conduct thorough checks to verify the IR drop
values at the working cells within specified limits.

B. Conventional Numerical Method for PG Analysis
The general circuit system can be described by Ohm’s Law,
Kirchoff’s Voltage Law, and Kirchoff’s Current Law. For the
static analysis of PG, only the parasitic resistance effect of
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Fig. 1 The multiple-layer structure of PG.

the metal wires is considered, so the whole circuit network is
a resistance network. Traditionally, using the modified nodal
analysis (MNA) method [7], electrical parameters can be
directly filled into the matrix by reading the elements and
topological relationships in the network. The system matrix of
a n-node PG network can be formulated as a linear system:

Gx = I, (1)

where G ∈ Rn×n represents the conductance matrix, x ∈
Rn×1 is the unknown voltage vector of circuit nodes, and
I ∈ Rn×1 is the vector of currents. By solving the equation,
the node voltage response under static circuit conditions can
be obtained. As the number of nodes in the PG grows ex-
ponentially, traditional methods struggle with longer solution
times or even become infeasible due to high computational
demands and memory demands. This exponential complexity
not only challenges the efficiency of conventional techniques
but also limits their applicability to large-scale problems.
Consequently, the necessity for ML methods becomes evident.

C. U-Net Architecture and Attention Mechanism
U-Net [22], originally developed for medical image segmen-
tation, is a widely adopted image-to-image architecture. Its
encoder-decoder structure enables effective segmentation by
leveraging context from more extensive overlapping regions.
Skip connections between corresponding encoder and decoder
layers preserve spatial information and fine-grained details
during upsampling, facilitating high-resolution reconstruction.

The Attention mechanism [23] enhances ML models by
selectively focusing on specific parts of the input features
Global and local attention [24] target features at varying spatial
scales. The CBAM [25] extends this by addressing multi-
scale and directional information. In this work, we incorporate
CBAM to integrate global and local attention, improving
feature representation across scales and directions.

D. Problem Formulation
This work aims to fuse the numerical method with ML to
achieve better performance in static IR drop analysis while
focusing on the IR drop of the cell at the bottom layer. To
predict IR drops, the PG is conceptualized as a 2D spatial
image, with each PG design represented as a data matrix. Each
feature map, denoted as Pmapi essentially serves as a spatial
representation of the inherent properties of the PG. The IR
drop of working cells in the entire PG is also converted to
a data matrix and represented as y. The algorithm F tries to
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Fig. 2 The overview of IR-Fusion, a fusion framework for static IR drop analysis combining numerical solution and ML.

give the closest prediction F∗ based on all the input features(
Pmap1 , ...,Pmapn

)
, formulated as:

F ∗ = argminLoss
(
F
(
Pmap1 , ...,Pmapn

))
, y
)
. (2)

III. IR-FUSION FRAMEWORK

A. Overall
Our work focuses on static IR drop analysis and proposes
a novel IR-Fusion framework that integrates the numerical
solution with ML, as shown in Fig. 2. The numerical solution
can provide a solid foundation for understanding and pre-
dicting complex PG systems. The integration with efficiency-
promising ML contributes to the development of more robust
and efficient analysis. In our framework, to obtain numerical
solutions in a rapid and reliable process, an efficient AMG-
PCG solver is applied to solve the system matrix. Then, based
on the numerical solution, hierarchical numerical-structural
fusion representing the multi-layer structure of the PG is
employed. Subsequently, we design the Inception Attention
U-Net model, which integrates the attention gate (AG), the
Inception module for including both local details and sur-
rounding context, and the CBAM that provides for both global
and local attention, to achieve perceptual fields with less cost
in the face of a large number of hierarchical features. Finally,
data augmentation is applied to improve data diversity and
robustness, while curriculum learning is used to handle the
diversity of PGs, improving the scalability of IR-Fusion.

B. Numerical Solution using AMG-PCG
For the system matrix shown in Equation (1), we would like
to utilize an efficient numerical method to provide as accurate
an initial solution as possible in a shorter runtime, laying the
foundation for understanding the PG system and subsequent
ML refinement. In the numerical solution phase, the spice file
of PG is regarded as an input, and a spice parser and a circuit
generator for preprocessing the data are utilized. Aiming to
provide reliable numerical solutions with rapid and robust
processes, the algebraic multigrid preconditioned conjugate
gradient (AMG-PCG) method in PowerRush [15] is applied.

The spice parser loads the spice file and creates a hash table
of circuit nodes representing circuit connections. It first builds
circuit elements as a sets. By traversing on these sets, the
PG is stored as a nodes list and wires map, which are linked
to present their topologies. Using this link table, the circuit
generator constructs the circuit topology graph, enabling the
extraction of the conductance matrix G for simulation.

Importantly, a linear solver based on the AMG-PCG method
is used to solve the system matrix, as shown in Fig. 3. It can

Setup

K-Cycle Multigrid Preconditioner

CG Iteration

Aggregation

Coarsening

Fig. 3 The illustration of AMG-PCG solver.

be divided into three stages:

Setup Stage. The solver recursively selects coarser levels of
the problem by grouping nodes and connections into progres-
sively coarser grids. The conductance matrix G and current
vector I in Equation (1) are transformed across multiple
levels of coarser representations. Transfer operators connecting
fine and coarse levels are represented by the preconditioning
matrix M−1, which ensures that information, such as the
residual rk = I −Gxk and search direction pk, is accurately
transferred between grids.

Preconditioning Phase. The solver applies the K-cycle
scheme, a multigrid cycling strategy that efficiently balances
convergence speed and computational cost. The precondition-
ing step modifies the residual via the matrix M−1:

rk+1 = rk − r⊤k M
−1rk

p⊤
k Gpk

Gpk, (3)

where M−1rk represents the correction on multiple grid lev-
els, ensuring fast convergence by addressing errors at various
scales. This correction accelerates the reduction of the residual
in each iteration.

CG Method. The solver utilizes aggregation-based AMG with
the K-cycle as an implicit preconditioner for the Conjugate
Gradient (CG) method. The iterative process updates the
solution by combining the preconditioned residual with the
search direction, using formulas:

xk+1 = xk +
r⊤k M

−1rk
p⊤
k Gpk

pk, (4)

pk+1 = M−1rk+1 +
r⊤k+1M

−1rk+1

r⊤k M
−1rk

pk. (5)

This ensures that the search direction is adjusted based on
the multilevel corrections provided by AMG, allowing the CG
method to converge more quickly to the final solution x.

In general, numerical methods require more iterations to
obtain an accurate solution. In this work, we use fewer



iterations to obtain fast and rough solutions and construct
numerical features for ML, as detailed in Section III-C. This
rough solution, although not accurate enough, still provides
the IR drop values for each node and constructs detailed
hierarchical numerical features, thus greatly benefiting ML in
understanding and learning PG systems.

C. Hierarchical Numerical-Structural Information Fusion
Each metal layer in PG contributes to power delivery and
impacts the final IR drop. Previous ML methods regard
PG as a whole map missing multi-layer details. The above
numerical methods can obtain rough IR drop solutions for
each layer of nodes, which helps to model the whole PG
more finely. Therefore, we construct hierarchical numerical
features based on the numerical solution, according to the
layer they belong to and their 2D spatial coordinate. Based
on the row w and height l from Library Exchange Format
(LEF), a design’s layer of size Wc×Lc translates to an image
of W (= Wc//w) × L (= Lc//l) pixels. In other words, the
coordinates of each node xn and yn will be translated to
x = xn//w and y = yn//l. In this way, every node is planted
into the 256 × 256 grid. Each metal layer corresponds to a
generated feature map, allowing the PG to produce feature
maps that align with the same number of grid layers in total.

Besides, given the limited representation of designs, our
method extracts more hierarchical structure features using the
PG spice file and cell layer features, including the current
map, the effective distance map, and the PDN density map.
We extract additional PG-structure-level features, such as the
shortest path resistance map and resistance map to capture
more details of the PDN structure. The shortest path resistance
map is the average of the cumulative resistance from each
node to voltage sources, while the resistance map distributes
the resistance of each resistor across overlapping grids. Subse-
quently, we extract five kinds of hierarchical structure features
based on their physical significance and the PG structure:

• The current map for each layer, representing the current
distribution, is allocated proportionally based on the
contribution from each layer, which is tied to resistance.

• The effective distance, calculated as the reciprocal of the
sum of the reciprocals of Euclidean distances, measures
proximity to voltage sources.

• The PDN density map is derived from the average PDN
pitch within each grid as detailed in the spice file.

• The resistance and shortest path resistance maps are
also computed based on their physical significance.

Hierarchical numerical and structure features together
make up features for ML

(
Pmap1 , ...,Pmapn

)
. This fusion of

numerical-structural information enables the model to leverage
theoretical insights and data-driven patterns. Numerical infor-
mation offers stability and consistency, essential for interpret-
ing complex datasets. The inclusion of structural information
allows the model to adapt and learn from patterns within the
data that may not be immediately apparent through numerical
methods alone. This fusion-information-driven approach en-
ables the model to uncover intricate relationships and trends,
driving more accurate predictions.
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Fig. 4 The architecture of Inception Attention U-Net.
D. Inception Attention U-Net Model
To fully utilize the information from both hierarchical numer-
ical and structure features, we design the Inception Attention
U-Net. The architecture of our proposed model, illustrated
in Fig. 4, is built upon the U-Net [22] framework and improves
based on PGAU [20]. Input features are progressively filtered
and downsampled by a factor of 2 at each scale, three times
in the encoding part. Since hierarchical features provide more
information, ordinary convolution methods using fixed-size
kernels may lead to information loss. To enhance the network’s
ability to capture both local details and broader context,
we incorporate Inception modules [26], [27]. Additionally,
the relationship between feature layers is crucial. Moreover,
the surrounding environment significantly influences special
regions like hotspots. Hence, an attention mechanism with
expanded scope and direction is essential for improving the
model’s interpretability and interaction. Thus, we incorporate
the CBAM to focus on various scales and directions in
subsequent decoder stages. Borrowing from the work in [18],
the model leverages a regression-like layer at the end of the
decoder path, for IR drop prediction at a 2D-spatial map
level. In the subsequent sections, we will present a detailed
explanation of the modules and blocks previously introduced.

Inception. Inception modules [26], [27] are multi-branch
convolutional architectures designed to learn feature maps
across different kernel sizes simultaneously. This multi-branch
design helps the model to capture features at different scales,
thus significantly improving its overall performance. There
are three variations: Inception-A, Inception-B, and Inception-
C. As detailed in [26], Inception-A is suitable for relatively
early convolutional layers, while Inception-B is suitable for
moderate-sized features. The Inception-C module is specifi-
cally optimized for high-dimensional feature extraction, con-
tributing to the model’s ability to process complex data rep-
resentations. In our model architecture, we adopt this sequen-
tial arrangement of Inception-A, Inception-B, and Inception-
C during the encoding phase. This systematic ordering not
only aligns with established best practices in [27] but also
minimizes information loss during downsampling. The kernel
sizes of Inception modules used in our model are the same
with [27], which helps capture details and broader context.

CBAM. To better focus on the information of hotspot regions
and the interaction between various layers of hierarchical fea-
tures, we employ CBAM [25] in our decoder. The CBAM layer



is an attention module specifically designed for convolutional
neural networks. It consists of two components: the Channel
Attention Module (Mc) representing global attention and the
Spatial Attention Module (Ms) with the idea of local attention.
While global attention attempts to capture the relevance of
input features from a global perspective and direction, local
attention only focuses on a local region (usually a fixed-size
window) in the input feature map to calculate the attention
weight. An intermediate feature map m ∈ RC×H×W is given
to the CBAM layer, it will calculate with Mc ∈ RC×1×1 and
Ms ∈ R1×H×H. The whole procedure is defined as:

m′ = Mc(m)⊗m,m′′ = Ms (m
′)⊗m′, (6)

where m′′ is the output of the CBAM layer and has the
same size as m. CBAM enables the embedding of global
information within the model, thereby mitigating the limita-
tions perception filed. This module improves the network’s
performance without adding complexity.

E. Augmented Curriculum Learning

To enhance the model’s robustness when the data is limited, we
augment the training data by applying various transformations
to each image-based input. Specifically, three operations are
performed on each feature map: clockwise rotations of 90°,
180°, and 270°. Features originating from the same PG after
these transformations are treated as new PG designs, resulting
in a fourfold increase in the number of PG designs and
significantly improving dataset diversity and robustness.

Since numerical methods provide a reliable prediction basis
for data, the model tends to predict results related to numerical
solutions. However, when it is migrated to new PGs, the
model’s scalability is easily lost in the prediction process, and
the large number of features brought about by hierarchical
operation will affect the convergence speed of the model.
Curriculum learning (CL) [28] is a training strategy that trains
ML models from easier samples to harder samples, which
imitates the meaningful learning order in human curricula.
Previous empirical studies have shown that curriculum learn-
ing strategies can improve the generalization capacity and
convergence speed of various models in computer vision [29].
In our approach, we apply predefined CL for the train set.
The predefined CL contains a predefined difficulty measurer
and predefined continuous training scheduler [30], as shown
in Fig. 5. In the predefined difficulty measurer, we set the
artificially generated (fake) designs to “easier” and the real-
world designs to “harder”. The purpose of this setting is to
strengthen the model’s generalization ability.

By exposing the model to more complex “harder” data dur-
ing training, the model can be forced to learn more robust and
discriminating features. This helps the model maintain high
performance in the face of previously unseen and potentially
more complex real data. In addition, the “harder” data helps
the model avoid overfitting or learning only simple features,
instead capturing deeper patterns and patterns in the data.
In the continuous training scheduler, the model adjusts the
training data subset after each epoch.

Training
Set

Difficulty
Measurer

Training 
Scheduler Model

Sample 
Batch

If model converges

Fig. 5 The illustration of predefined curriculum learning.
IV. EVALUATION

A. Experimental Settings

Baselines. IR-Fusion is compared with recent ML-based IR
drop models, including IREDGe [17], MAVRIEC [18], IRPnet
[19], PGAU [20], and MAUnet [21]. Besides, it is compared
to the winner of the ICCAD 2023 contest [31].

Datasets. The ICCAD2023 dataset [31], specialized for the
static IR drop prediction task, is used for evaluation. It contains
120 designs, 20 of which are real designs, and the rest
were artificially generated based on [32], named fake designs,
close to realistic PGs. The dataset provides spice and image-
based data where each pixel in images represents the current,
effective distance, PDN density matrix, and IR drop for a PDN
node in a 1µm × 1µm region. We follow the contest setup,
using 10 real designs for testing and the rest for training.

Data augmentation increases the dataset size fourfold, with
oversampling applied: fake designs are doubled, and real ones
are quintupled. Following a curriculum learning strategy, fake
designs are categorized as “easier,” while real designs are
classified as “harder.” In particular, all baselines adopt the data
after augmentation for training.

Metrics. Following the contest [31], the mean absolute error
(MAE), F1 score, and runtime are selected as the evaluation
metrics. The MAE is the average of the absolute difference be-
tween a prediction and the ground truth. The F1 score reflects
the accuracy and comprehensiveness of the prediction for the
hotspots region. In binary classification tasks, the outcomes
of the predictions can be divided into four distinct categories:
true positive (TP ), true negative (TN ), false positive (FP ),
and false negative (FN ). TP and TN correspond to correctly
identified positive and negative samples, respectively, while
FN and FP indicate samples incorrectly classified as positive
and negative. In this problem, IR drop values exceeding
90% of the maximum ground truth are classified as positive
samples, whereas values below this threshold are considered
negative. The F1 score is defined as:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2× P ×R

P +R
. (7)

Since designers are more concerned with the worst-case of
IR drop, its modeling error is extremely critical. The error in
the region of maximum IR drop is evaluated, called MIRDE.
Moreover, runtime is used to compare the efficiency.

B. Main Results
The IR drop analysis results are summarised in TABLE I.
Our IR-Fusion surpasses all baselines and gains consider-
able advantages on each accuracy metric. Considering newly-
proposed SOTA MAUnet [21], our approach achieves better
performance with the improvement of 28.3% on MAE, 14.5%
on F1, and 27.6% on MIRDE, with no significant time cost



TABLE I Main results. The unit of MAE and MIRDE is
×10−4V and runtime is s.

Methods MAE↓ F1↑ Runtime↓ MIRDE↓

IREDGe [17] 3.75 0.49 1.55 7.52
MAVIREC [18] 2.78 0.46 1.97 5.88

IRPnet [19] 1.66 0.61 2.22 5.25
PGAU [20] 1.72 0.60 2.07 5.02

MAUnet [21] 1.06 0.62 2.31 4.38
Contest Winner [31] 1.08 0.57 2.24 4.33

IR-Fusion (Ours) 0.72 0.71 6.98 3.05

(a) Golden (b) MAUnet (c) IR-Fusion (Ours)

Fig. 6 Visualization of IR Drop distribution of a PG.

increase. Our prediction images have higher structural fidelity,
with significant error reductions in multi-level (high and low
IR drop regions, especially for significant Top 10% and 20%
drop hotspot areas) and multiscale (global and local) IR drop
regions. Fig. 6 visualizes the predicted IR drop map given by
our model and SOTA MAUnet, comparing it with the golden
label. Our model can intuitively provide more detailed predic-
tions for the IR drop map with fewer errors and trends closer
to the label. Moreover, compared with other ML baselines,
our method achieves better performance in every metric. IR-
Fusion still outperforms all baselines in MIRDE, representing
more accuracy in the worst-case region. With the foundation
of numerical solutions, the model can begin training from a
point that is much closer to the target label, while CBAM
increases the interpretability of the model’s decisions, allowing
it to perform robustly under varying conditions.

Due to the integration of numerical methods, our framework
faces an inevitably higher time consumption. Nevertheless,
the performance improvements achieved are substantial. In
summary, our proposed fusion framework achieves more out-
standing and robust performance within an acceptable runtime.

C. Trade-off Study
To evaluate the effectiveness of fusion, IR-Fusion is compared
with an efficient numerical simulator PowerRush [15]. The
numerical methods in both perform 1-10 iterations and the
results are shown in Fig. 7. Notably, IR-Fusion surpasses
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PowerRush in all evaluated metrics. A key advantage of IR-
Fusion is its ability to achieve the same MAE in just 2
iterations, while PowerRush requires 10 iterations to reach
the same level. Furthermore, IR-Fusion consistently achieves
a higher F1 score— a performance level PowerRush cannot
reach at any iteration. This observation suggests that the
numerical solver may partially overlook the patterns associated
with hotspots, whereas ML provides an additional layer of
detection, effectively capturing supplementary features. The
introduction of ML drastically reduces the number of itera-
tions required for numerical methods, which directly reduces
computational costs and improves efficiency. Thanks to the
fusion of numerical and ML methods, IR-Fusion achieves a
better trade-off between accuracy and efficiency.

D. Ablation Study
Ablation experiments are conducted to evaluate the impact of
various techniques in our IR-Fusion. Fig. 8 shows the results
without a certain technique. The results demonstrate that the
numerical solution (Num. Solu.) significantly reduces MAE,
likely due to its precise initial point for learning. Additionally,
our hierarchical features also improve performance. Replacing
traditional convolution with Inception boosts F1, leveraging
multi-scale information to identify hotspots better. The CBAM
module, incorporating global and local attention, further en-
riches the model’s learning. Both data augmentation (Data
Aug.) and curriculum learning (Curr. Lear.) also contribute
to performance gains, especially in F1 score.

V. CONCLUSION

In this work, we propose a novel framework IR-Fusion for
static IR drop analysis, combining the numerical solution with
ML. IR-Fusion exploits the advantages of both methods and
can achieve a good trade-off between efficiency and accuracy.
Experiments demonstrate that our framework can achieve the
best performance compared to SOTA methods.
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