
FTAFP: A Feedthrough-Aware Floorplanner for Hierarchical

Design of Large-Scale SoCs

Zirui Li∗

lzr_official@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Beijing, China

Kanglin Tian∗

tiankl@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Beijing, China

Jianwang Zhai†

zhaijw@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Beijing, China

Zixuan Li
gxydbc@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Beijing, China

Shixiong Kai
kaishixiong@huawei.com

Noah’s Ark Lab, Huawei

Beijing, China

Siyuan Xu
xusiyuan520@huawei.com

Noah’s Ark Lab, Huawei

Shenzhen, China

Bei Yu
byu@cse.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong SAR

Kang Zhao
zhaokang@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Beijing, China

ABSTRACT

Floorplanning is a critical step in the physical design of digital inte-

grated circuits (ICs). As circuit complexity grows, the hierarchical

design paradigm of large-scale systems on chips (SoCs) is gradually

emerging, introducing new optimization challenges, particularly

with feedthrough. Feedthrough is a through-module connection,

yet it would require additional buffers and ports inside the mod-

ule for data transmission. Excessive feedthroughs will inevitably

hinder the routability within reusable modules, causing conges-

tion and timing problems. However, few works have addressed the

challenges of feedthrough modeling and optimization.

In this work, we propose FATFP, a feedthrough-aware SoC floor-

planner, to address the aforementioned issues. First, an estimation

model is proposed to assess feedthroughs required in the floorplan.

Then, we introduce a novel topological representation, SCB-Tree,

which incorporates slack computation into the CB-Tree. We also

develop a two-phase simulated annealing (SA) framework and an

automatic optimization cost scheme to enhance performance. Exper-

imental results demonstrate that our floorplanner achieves notable

optimization in terms of common edge, feedthroughed modules,

and feedthrough wirelength over previous work, with only minor

trade-offs in total wirelength and runtime.

∗Co-first authors with equal contribution.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01. . . $15.00
https://doi.org/10.1145/3658617.3697728

Buffer

Violating Module

Feedthrough Ports

Violating Macro

Figure 1: The violations caused by feedthrough insertion in

hierarchical floorplanning of the large-scale SoC.

KEYWORDS

Electronic Design Automation, Floorplanning, Feedthrough

ACM Reference Format:

Zirui Li, Kanglin Tian, Jianwang Zhai, Zixuan Li, Shixiong Kai, Siyuan Xu,

Bei Yu, Kang Zhao. 2025. FTAFP: A Feedthrough-Aware Floorplanner for

Hierarchical Design of Large-Scale SoCs . In 30th Asia and South Pacific

Design Automation Conference (ASPDAC ’25), January 20–23, 2025, Tokyo,

Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3658617.

3697728

1 INTRODUCTION

Floorplanning is the initial step in IC physical design and signifi-

cantly impacts the quality of subsequent design stages, e.g., place-

ment and routing. Given a module list and a netlist, the floorplan-

ner determines the shape and position of the modules according

to specific strategies to achieve comprehensive optimization, e.g.,

wirelength, area, timing, congestion, etc. Due to the increasing scale

and complexity of SoCs, modern chip design commonly uses hier-

archy and modularization concepts, which bring the floorplanning

problem to the sub-chip level [1]. Hierarchical design decomposes

886

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Li et al.

complex systems into multiple levels of subsystems that encapsu-

late specific functionalities and interact through interfaces. Con-

currently, modular design facilitates the encapsulation and reuse

of functionalities at each level. These integrated, bottom-up design

methods significantly speed up the front-end chip design process.

However, they also present new optimization challenges in physi-

cal design, particularly in hierarchical floorplanning for large-scale

SoCs [2, 3], where feedthrough [4] is a key challenge.

In hierarchical SoC design, it is important to consider the com-

pleteness, reusability, and interaction of modules at each level.

When higher-level modules are traversed by wires, feedthroughs

are used to connect the nets. To meet connectivity and timing

constraints, additional buffers, ports, registers, etc., often need

to be inserted. As shown in Figure 1, directly inserting these ele-

ments may cause violations with the original components inside

the feedthroughed module, necessitating the reevaluation and ad-

justment of design feasibility. Such adjustment may also present

challenges to subsequent placement and routing, resulting in degra-

dation of timing, area, and other metrics [2]. When there are too

many feedthroughs, the modules may need to be redesigned, affect-

ing the design and reuse of modules at each hierarchy. Therefore,

it is necessary to minimize the generation of feedthrough.

The most direct way to minimize feedthrough demand is to re-

duce through-module connections and routing. Existing works,

such as BOB-RSMT [5] aim to minimize over-block connection by

optimizing RSMT construction during the pre-routing and global

routing stages. Although optimization in the later physical design

stages such as routing can avoid some feedthrough insertions, the

optimization space is limited and still inevitably prolongs the de-

sign iterations. To improve design efficiency and optimize quality,

feedthrough minimization should be implemented as early as pos-

sible in the design cycle. Therefore, it is necessary and urgent to

consider feedthrough optimization in hierarchical floorplanning.

After decades of development, floorplanning techniques have ad-

vanced significantly and can be broadly categoried into three types:

analytical, heuristic, and learning-based methods. Analytical-based

methods [6, 7] generally adopt a two-stage framework of global

distribution and legalization. Although known for their efficiency,

quality, and robustness, analytical methods are limited by the need

for differentiable constraint models [8, 9], making complex con-

straints and objectives challenging to address. Heuristic methods

rely on topological representations, e.g., Sequence Pair (SP) [10, 11],

Corner Block List (CBL) [12, 13], B*-Tree [14, 15] and their variants.

These methods employ heuristic algorithms to optimize floorplans,

leveraging geometric relations in different topologies to address

complex constraints. For instance, CB-Tree [15] integrates corner

stitching into a B*-Tree to refine neighboring relations. Recently,

deep learning [16, 17] and reinforcement learning [18–20] frame-

works have been used to formulate floorplanning problem, achiev-

ing promising results. However, these methods struggle to handle

large cases and lack generalization across diverse circuit designs.

In hierarchical floorplanning for SoCs, complex objectives like

feedthrough optimization should be considered, requiring mod-

ules within the same net to be placed as adjacent as possible to

minimize feedthrough. However, overlaps in the global distribu-

tion stage of analytical methods complicate feedthrough handling,

which relies on neighbor information. Learning-based methods,

�

�

�

�

� �

(a)

�

�

�

�
	
(

,�
)

�
�	(
,�)

�

�

�

(b)

Figure 2: Feedthrough example with two nets, i.e, 𝑁1 = {𝐴, 𝐵}
and 𝑁2 = {𝐴,𝐶}. (a) Floorplan with feedthroughed module
𝐷, 𝐸, 𝐹 ; (b) Floorplan with no feedthrough in net 𝑁1 and 𝑁2.

constrained in representation and generalization, are also unsuit-

able for feedthrough optimization. Considering both efficiency and

generality, heuristic-based methods are promising approaches to

address the feedthrough challenge. In this work, we propose a

feedthrough-aware floorplanner to address feedthrough optimiza-

tion at the sub-chip level. Our main contributions are as follows:

• To achieve fast optimization of feedthrough, We introduce
an accurate feedthrough model that estimates the length of

feedthrough wires, the number of feedthroughed modules, and

the length of the common edge.

• To address the fixed-outline constraint, we propose a new rep-
resentation called SCB-Tree, which performs slack computation

by corner stitching while packing modules.

• To better satisfy the fixed-outline constraints and enhance the
search for optimal solutions, we propose a two-phase SA frame-

work that leverages slack information.

• We design an automatic cost evaluation method that more effec-
tively normalizes wire length and feedthrough-related metrics

based on the input module list and netlist.

2 PRELIMINARIES

2.1 Fixed-outline Floorplanning

Let 𝐵 = {𝑏𝑖 |1 ≤ 𝑖 ≤ 𝑛} be a set of rectangle modules, each module
𝑏𝑖 has width𝑤𝑖 and height ℎ𝑖 . Modules can be classified into three
categories: hard, soft, and pre-placed. Hard modules have fixed

dimensions, while soft modules can adjust their shapes within a

fixed area; pre-placed modules are hard modules with preset coor-

dinates. The connections among modules are described in netlist

𝑁 = {𝑁𝑖 |1 ≤ 𝑖 ≤ 𝑚}, where each net 𝑁𝑖 specifies a set of modules

requiring connectivity.

The fixed-outline floorplanning aims to place all modules with-

out overlapping in a rectangular outline𝑅, withwidth𝑊0 and height
𝐻0. Given the total modules’ area 𝐴 and a maximum whitespace
ratio 𝜎 , the width𝑊0 and the height 𝐻0 are calculated as:

𝑊0 =
√
(1 + 𝜎)𝐴𝜆, 𝐻0 =

√
(1 + 𝜎)𝐴/𝜆, (1)

where 𝜆 represents the aspect ratio. On the premise of ensuring the
above constraints, the floorplanner aims to optimize metrics (e.g.

wirelength, feedthrough, etc.) to obtain the optimal floorplan.

2.2 Feedthrough Problem

Since our work focuses on the feedthrough optimization problem of

hierarchical floorplanning for large-scale SoCs, the relevant terms

are briefly explained below.

887

FTAFP: A Feedthrough-Aware Floorplanner for Hierarchical Design of Large-Scale SoCs ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

n1

n2

n4

n3

n5

n6 n7

(a)

b6
b2

b4
b3

b1

(b)

b5

b6

b7

b2
b4

b3

b1

rt :
tr :
bl :
lb :

(c)

Figure 3: (a) A CB-Tree example. (b) The corresponding floor-

plan (tile plane) before packing subtree𝑛5 → 𝑛7. (c) The corre-
sponding floorplan(tile plane). All top neighbors of module

𝑏1 can be found by tracing through the red pointers.

Feedthrough. In hierarchical floorplanning, unlike traditional

floorplanning, the through-module nets need to be connected by

feedthroughs. As described in Section 1, module-scale feedthrough

wires may cause problems such as timing and routing congestion.

Moreover, the additional inserted registers and buffers may neces-

sitate a redesign of the entire module. Therefore, modules within

the same net should be adjacently placed to the fullest extent to

reduce feedthrough demand. The estimation of feedthroughs in-

volves two metrics: total feedthrough wirelength 𝐹𝑇𝐻𝑤𝑙 and the

number of feedthroughed modules 𝐹𝑇𝐻𝑛𝑢𝑚 . Let 𝑓 𝑡ℎ𝑤𝑙 (𝑁𝑖) and
𝑓 𝑡ℎ𝑛𝑢𝑚 (𝑁𝑖) represent these metrics for a net 𝑁𝑖 . For example,

for the two nets shown in Figure 2(a), the feedthrough metrics

𝐹𝑇𝐻𝑤𝑙 = 𝑤 (𝐸) + 𝑤 (𝐹) + ℎ(𝐷), 𝐹𝑇𝐻𝑛𝑢𝑚 = 3. The more detailed
estimating methods will be described in Section 3.1.

Common Edge. The common edge is defined as the edge shared by

two adjacent modules within the same net, as shown in Figure 2(b).

The length of this edge dictates the capacity of a module’s ports.

A floorplan featuring more total common edge (𝐶𝐸𝑙𝑒𝑛) suggests
a higher interactivity between modules, fulfilling more extensive

connectivity requirements. Let 𝑐𝑒𝑙𝑒𝑛 (𝐴, 𝐵) denote the common edge
length between module 𝐴 and 𝐵. Assume that the coordinates of
the bottom-left and top-right corner of the module are (𝑥𝑏𝑙 , 𝑦𝑏𝑙)
and (𝑥𝑡𝑟 , 𝑦𝑡𝑟). Then, 𝑐𝑒𝑙𝑒𝑛 (𝐴, 𝐵) can be calculated as:

If 𝐴, 𝐵 adjacent horizontally ,then:

𝑐𝑒𝑙𝑒𝑛 (𝐴, 𝐵) = min(𝐴.𝑦𝑡𝑟 , 𝐵.𝑦𝑡𝑟) −max(𝐴.𝑦𝑏𝑙 , 𝐵.𝑦𝑏𝑙);
If 𝐴, 𝐵 adjacent vertically ,then:

𝑐𝑒𝑙𝑒𝑛 (𝐴, 𝐵) = min(𝐴.𝑥𝑡𝑟 , 𝐵.𝑥𝑡𝑟) −max(𝐴.𝑥𝑏𝑙 , 𝐵.𝑥𝑏𝑙) .

(2)

2.3 CB-Tree Representation

A CB-Tree is a B*-Tree integrated with corner stitching [15], a clas-

sical data structure for representing non-overlapping rectangular

modules in the 2D plane (called tile plane). It can be traversed in

depth-first search (DFS) order to locate the corresponding modules.

Let 𝑛𝑖 be the corresponding tree node of module 𝑏𝑖 . It has coordi-
nates (𝑥𝑖 , 𝑦𝑖) and width 𝑤𝑖 and height ℎ𝑖 . The tree structure can
directly compute the horizontal coordinate of each module. Let 𝑛 𝑗

and 𝑛𝑘 be the left and right child of 𝑛𝑖 , then 𝑥 𝑗 = 𝑥𝑖 +𝑤𝑖 and 𝑥𝑘 = 𝑥𝑖 .
Each module should be placed in the lowest possible position to

determine the vertical coordinate, and then the tile plane should be

updated. Figure 3 gives a CB-Tree and the corresponding floorplan.

The corner stitching models modules and empty spaces as tiles

and links all of them with four pointers. As shown in Figure 3(c),

the 𝑟𝑡 , 𝑡𝑟 , 𝑏𝑙 , and 𝑙𝑏 pointers point to the tiles adjacent to the top,
right, left, and bottom boundaries, respectively. Corner stitching

����������	�
	���	���������	�

�	����������	�

�	�����
��

�	�������
��������

���������������

�������	�
�
�������

�	�����
�����	� !������	�����������

�������

�����������

�����������
��
����	�

�����������

�	�����
�����	�

�	�"�	������
�������	����

�����#	�"�������$���
�	����

�������

������

�������

������

�������
�����������

�������������	���	����	��%

����
�����$���	�

!������	����������	�

�����

�����	�

&	�����	��

!�		����������'�����

��

��

�����	��������	��������%

(������
��

���

�� ���

Figure 4: Flowchart of FTAFP.

provides many efficient operations to support handling geometric

constraints. Neighbor finding is the most commonly used one in

this work. Figure 3(c) provides an example of finding all neighbors

of the target tile at the given direction.

2.4 Slack Computation

The slack of a module refers to the range within which it can

move without overlapping with or pushing other modules. Slack

computation is widely used in constraint graph-based placement

legalization algorithms [6], based on the following observations:

• The x and y coordinates of modules are computed separately.
• In each dimension, the floorplan is constrained by one or more
“critical paths” in corresponding constraint graphs.

• Any change in the location of a module on the critical path will
produce overlaps or increase the span of the floorplan.

Take the horizontal constraint graph𝐺ℎ as an example. Let module

𝑣𝑖 be represented as vertex 𝑣ℎ𝑖 in 𝐺ℎ . Its horizontal slack (x-slack)

is calculated as Equation (3) [21] , where 𝑅(·) and 𝐿(·) denote the
furthest right and left positions that · can reach:

𝑠𝑙𝑎𝑐𝑘 (𝑣ℎ𝑖) = 𝑅(𝑣ℎ𝑖) − 𝐿(𝑣ℎ𝑖). (3)

3 FTAFP FRAMEWORK

We first give an overview of our proposed feedthrough-aware floor-

planner (i.e., FTAFP), which includes: a feedthrough estimation

model, slack computation with corner stitching, a two-phase SA

framework, and an optimization cost scheme. The feedthrough esti-

mation model initially simplifies the nets into sub-nets, constructs

a Minimum Spanning Tree (MST) for each to estimate feedthrough

wirelength, and employs a greedy algorithm to count feedthrough

modules. The proposed SCB-Tree integrates slack computation with

CB-Tree to better exploit the features of boundary and adjacency

awareness. Figure 4 shows the overall flow of FTAFP, which adopts

a novelly introduced two-phase SA framework. Each phase includes

a distinctive module selection and perturbation process, aiming to

shrink the boundary and optimize the solution quality, separately.

Besides, a meticulously designed cost scheme is applied.

3.1 Feedthrough Estimation Model

In the actual design process, engineers often connect directly to

adjacent modules within the net, using feedthroughs only when it is

888

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Li et al.

ℎ

ℎ′

′

����� ��ℎ��

Figure 5: An example of net simplification. A net with 6

modules which are clustered into 3 sub-nets.

unavoidable to connect through modules outside the net. Therefore,

our feedthrough model is based on the following rules:

• Modules that are directly adjacent are assumed to be connected
and no feedthrough is required.

• There are no feedthrough requirements arising between mod-
ules separated by empty tiles (whitespace).

• Connections between adjacent modules are transitive within
the same net.

Based on these rules, feedthroughs are estimated with the mini-

mum wire length and the fewest number of modules traversed to

ensure all modules within the net form a connected graph. Our

feedthrough modeling method is divided into two parts: net simpli-

fication and feedthrough estimation.

Net simplification is to cluster adjacent modules into sub-nets,

allowing feedthrough estimation to be performed within these

sub-nets rather than between modules. At first, we transform nets

into undirected graphs, where edges are only constructed between

adjacent modules. The connected components within are defined as

sub-nets. Algorithm 1 delineates the process described above and

Figure 5 presents an example. We utilize the union-find algorithm to

merge each pair of adjacent modules within, meanwhile, computing

the length of the common edge between the pair using Equation (2).

Through the 𝐹𝑖𝑛𝑑 operation,the net 𝑁𝑖 is simplified into a set of

sub-nets 𝑁𝑠𝑢𝑏 = {𝑁𝑠𝑞 |1 ≤ 𝑞 ≤ 𝑛𝑖 , 𝑁𝑠𝑞 ⊂ 𝑁𝑖 }.
For the sub-net 𝑁𝑠𝑞 , the coordinates of its central node (𝑥𝑞, 𝑦𝑞)

are calculated as the average of the central coordinates of all its

modules. Treating these centers as nodes, the shortest feedthrough

connections between sub-nets can be found using an MST. Let 𝐸𝑖
be the set of edges in the MST for net 𝑁𝑖 . Consider two sub-nets,

𝐴 and 𝐵, connected in the MST, with the edge weight 𝜔 (𝐴, 𝐵), the
weighted distance 𝐷𝑤 (𝐴, 𝐵) between which can be calculated by:

𝜔 (𝐴, 𝐵) = [𝑛𝑏𝑙𝑘 (𝐴) + 𝑛𝑏𝑙𝑘 (𝐵)] /2,
𝐷𝑤 (𝐴, 𝐵) = 𝑤𝑙𝑚𝑎𝑛ℎ (𝐴, 𝐵) × 𝜔 (𝐴, 𝐵), (4)

where𝑤𝑙𝑚𝑎𝑛ℎ (𝐴, 𝐵) represent the manhattan distance between the
center of 𝐴 and 𝐵, 𝑛𝑏𝑙𝑘 (𝐴) is the amount of modules in sub-net 𝐴.
For net 𝑁𝑖 , regardless of the actual route shape, its feedthrough

wirelength 𝑓 𝑡ℎ𝑤𝑙 (𝑁𝑖) can be estimated as the sum of the wirelength
of each feedthrough edge within the MST:

𝑓 𝑡ℎ𝑤𝑙 (𝑁𝑖) =
∑

𝑒 (𝐴,𝐵) ∈𝐸𝑖
𝑓 𝑡ℎ𝑤𝑙 (𝐴, 𝐵) × 𝜔 (𝐴, 𝐵),

𝑓 𝑡ℎ𝑤𝑙 (𝐴, 𝐵) = [
𝑤𝑙𝑚𝑎𝑛ℎ (𝐴, 𝐵) −𝑤𝑙 ′ (𝐴) −𝑤𝑙 ′ (𝐵)] × 𝜔 (𝐴, 𝐵),

𝑤𝑙 ′ (𝐴) =𝑤 (𝐴) + ℎ(𝐴)
2

×
√

𝑎𝑟𝑒𝑎′ (𝐴)
𝑎𝑟𝑒𝑎(𝐴) ,

(5)

Algorithm 1 Net Simplification Algorithm.

Input: A net cell list 𝑁𝑖 and all modules 𝐵 ∈ 𝑁
Output: Sub-net list 𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠
for 𝐵 𝑗 ∈ 𝑁, 𝑗 = 1→ 𝑁𝑖 .𝑠𝑖𝑧𝑒 () do

for 𝐵𝑘 ∈ 𝑁,𝑘 = 𝑗 → 𝑁𝑖 .𝑠𝑖𝑧𝑒 () do
if 𝐵 𝑗 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠.𝑐𝑜𝑢𝑛𝑡 (𝐵𝑘) then

𝐶𝐸𝑙𝑒𝑛+ = 𝑐𝑒𝑙𝑒𝑛 (𝐵 𝑗 .𝐵𝑘);
Union(Find(𝐵 𝑗), Find(𝐵𝑘));

for 𝐵 𝑗 ∈ 𝑁𝑖 , 𝑗 = 1→ 𝑁𝑖 .𝑠𝑖𝑧𝑒 () do
for 𝑁𝑠𝑞 ∈ 𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠, 𝑞 = 1→ 𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠.𝑠𝑖𝑧𝑒 () do

if Find(𝐵 𝑗 == 𝑁𝑠𝑞 .𝑝𝑎𝑟𝑒𝑛𝑡) then
𝑁𝑠𝑞 .𝑐𝑒𝑙𝑙𝑠push_back(𝐵 𝑗);

Update the Outline and coordinate of 𝑁𝑠𝑞 ;

if 𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠.𝑠𝑖𝑧𝑒 () == 0 then
𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠 .push_back(New 𝑆𝑢𝑏𝑛𝑒𝑡 (𝐵 𝑗));

return 𝑁𝑖 .𝑆𝑢𝑏𝑛𝑒𝑡𝑠 .

Algorithm 2 Algorithm to Estimate 𝑓 𝑡ℎ𝑛𝑢𝑚 .

Input: Two sub-nets 𝐴, 𝐵
Output: Feedthrough number between 𝐴 and 𝐵 𝑓 𝑡ℎ𝑛𝑢𝑚
Let P equal to the tile contains A’s center point;

𝑟𝑒𝑎𝑐ℎ𝑥 , 𝑟𝑒𝑎𝑐ℎ𝑦, 𝑓 𝑡ℎ𝑏𝑙𝑘 = 0;
while 𝑟𝑒𝑎𝑐ℎ𝑥 ∗ 𝑟𝑒𝑎𝑐ℎ𝑦 == 0 do

𝑑𝑖𝑠𝑡 = 0;
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑠𝑒𝑎𝑟𝑐ℎ = Connect(𝑃 .𝑛𝑏𝑟 (𝑑𝑖𝑟 [0]), 𝑃 .𝑛𝑏𝑟 (𝑑𝑖𝑟 [1]));
for 𝑛𝑏𝑟𝑛𝑒𝑥𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑠𝑒𝑎𝑟𝑐ℎ do

𝑝𝑛𝑡 = 𝑛𝑏𝑟𝑛𝑒𝑥𝑡 .𝑝𝑜𝑖𝑛𝑡 (𝑑𝑖𝑟 [0], 𝑑𝑖𝑟 [1]);
𝑑𝑖𝑠𝑡𝑥 = (𝐵.𝑥𝑚𝑖𝑑 −𝑝𝑛𝑡 .𝑥) ∗𝑑𝑖𝑟 [0], 𝑟𝑒𝑎𝑐ℎ𝑥 = (𝑑𝑖𝑠𝑡𝑥 <= 0);
𝑑𝑖𝑠𝑡𝑦 = (𝐵.𝑦𝑚𝑖𝑑 −𝑝𝑛𝑡 .𝑦) ∗𝑑𝑖𝑟 [1], 𝑟𝑒𝑎𝑐ℎ𝑦 = (𝑑𝑖𝑠𝑡𝑦 <= 0);
if 𝑑𝑖𝑠𝑡𝑥∗!𝑟𝑒𝑎𝑐ℎ𝑥 + 𝑑𝑖𝑠𝑡𝑦∗!𝑟𝑒𝑎𝑐ℎ𝑦 > 𝑑𝑖𝑠𝑡 then

𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑥∗!𝑟𝑒𝑎𝑐ℎ𝑥 + 𝑑𝑖𝑠𝑡𝑦∗!𝑟𝑒𝑎𝑐ℎ𝑦 ;
𝑃 = 𝑛𝑏𝑟𝑛𝑒𝑥𝑡 ;

if 𝑃 .𝑖𝑠𝑆𝑜𝑙𝑖𝑑 () then 𝑓 𝑡ℎ𝑛𝑢𝑚 + +;
return 𝑓 𝑡ℎ𝑛𝑢𝑚 .

where 𝑒 (𝐴, 𝐵) is the edge of the constructed MST,𝑤 (𝐴) and ℎ(𝐴)
are the side length of a sub-net, 𝑎𝑟𝑒𝑎′ (𝐴) is the summary of modules
within 𝐴, 𝑎𝑟𝑒𝑎(𝐴) is the area of the sub-net 𝐴’s boundary.
In addition to wirelength, the number of feedthrough modules

(𝑓 𝑡ℎ𝑛𝑢𝑚) is a crucial factor in assessing floorplan quality—a bet-
ter floorplan will have fewer feedthrough modules for the same

wirelength. To estimate 𝑓 𝑡ℎ𝑛𝑢𝑚 , we propose a greedy detection
algorithm based on neighbor searching. The algorithm selects the

tile with the largest horizontal or vertical span along the estimated

route until it lies within the target sub-net boundary in both direc-

tions, as summarized in Algorithm 2. The search begins at the tile

containing the center of sub-net 𝐴, using the array 𝑑𝑖𝑟 to indicate
the relative 2D direction from 𝐴 to 𝐵 (where 𝑑𝑖𝑟 [0] values −1 and
1 denote left and right, and 𝑑𝑖𝑟 [1] values represent up and down).
The algorithm finds the neighbor tile with the furthest-reaching

endpoint, then checks if the target range is met. If not, it moves to

this neighbor tile and repeats until the number of feedthrough mod-

ules along each edge 𝑒 is counted, yielding the total feedthrough
modules for net 𝑁𝑖 .

889

FTAFP: A Feedthrough-Aware Floorplanner for Hierarchical Design of Large-Scale SoCs ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

x:0%

y:0%

x:9.3%

y:0%

x:9.3%

y:0%

x:14.7%

y:0%

x:14.7%

y:14%

x:14.7%

y:0%

x:0%

y:0%

b5 b6
b7

b2

b4b3

b1

(a)

x:0%

y:36.3%

x:33.6%

y:36.3%

x:0%

y:36.3%

B C

x-slack

y
-slack

A

b2

b3

b1

(b)

x:51.3%

y:14%

x:0%

y:0%

x:9.3%

y:0%

x:9.3%

y:14%

x:51.3%

y:0%

x:0%

y:36.3%

x-slack

y-slackb5 b6

b2

b4b3

b1

(c)

Figure 6: (a) An example tile plane contains seven packed

modules. (b) Slacks of 𝑏3 are initialized its slacks based on
the associated tiles A and B. (c) When packing module 𝑏6, we
update module 𝑏5’s x-slack and module 𝑏4’s y-slack as 𝑏6’s.

����)*�

�����	
�������*
������
���	

����

��	�
������
� !���

����	��	������

��!��
���	

��
����� �
���	�

��!��
��
��
����

�)*)��	���)*��

��

�

��

�

������

� 	��
�
� !��

������
��
"#$%&�

Figure 7: The slack computation flow by SCB-Tree.

3.2 Slack Computation by Corner Stitching

To enhance the outline awareness of the CB-Tree while accommo-

dating the newly proposed optimization objective, we propose the

SCB-Tree, which extends the slack computation to corner stitching.

The corresponding floorplan of a given SCB-Tree is determined

by traversing the tree in DFS order. Each module’s coordinate is

determined based on the principles outlined in Section 2.3. As each

module is packed, the tile plane and the slack of each module as-

sociated with the current module are updated. After packing a

module, the current tile plane appears as shown in Figure 6(a),

where tiles with solid lines represent modules and tiles with dashed

lines represent empty tiles.

We first set the module’s initial slack to facilitate later updates.

For an unplaced module𝑏𝑖 with heightℎ𝑏𝑖 and width𝑤𝑏𝑖 , the initial

slack in its x-dimension is the sum of the widths of the empty tiles

to its right whose height exceeds ℎ𝑏𝑖 . Similarly, the initial slack in
its y-dimension is the height of the empty tile above it whose width

exceeds𝑤𝑏𝑖 . Figure 6(b) gives an example of slack initialization.

Next, we implement the following update strategy to dynamically

adjust the module’s slack during packing. Once a module is packed,

the slacks in the x and y dimensions are updated separately based

on the corresponding modules to its left and bottom, as shown in

Figure 6(c). Since 𝑏1, 𝑏3, 𝑏5 are modules on a critical path and their
y-slack is 0, the y-slack of 𝑏1 and 𝑏3 do not need updating. Only
the y-slack of 𝑏4 is updated to match that of 𝑏6.
Figure 7 shows our slack computation flow. For a perturbed

SCB-Tree, we first determine the positions of modules based on

x:-10.5%

y:0%

x:-10.5%

y:0%

x:4.5%

y:0%

x:4.5%

y:11.4%

x:4.5%

y:0%

x:-10.5%

y:11.4%

b5 b6

b7

b2

b4b3

b1

x:-10.5%

y:4%

(a)

x:0%

y:0%

x:0%

y:0%

x:4.5%

y:0%

x:0%

y:4%

x:4.5%

y:0%

x:0%

y:0%

x:4.5%

y:0%

b5 b6 b7

b2

b4b3

b1

(b)

Figure 8: (a) A floorplan with 7 modules, the black arrow

represents the critical path on x-dimension, and the x-slack

on this path is non-positive. (b) After rotating module 𝑏2 on
the critical path, the x-span of the floorplan is reduced.

the packing strategy of the CB-Tree, while initializing the slack.

After completing the module packing, we identify adjacent modules

through neighbor finding in the corner stitching and update their

x-slack and y-slack accordingly.

3.3 Two-phase SA Framework

In traditional SA processes, it is often unclear which modules influ-

ence the span of the floorplan, and random perturbation operations

fail to effectively control the process of satisfying fixed-outline

constraints. Especially when optimizing feedthroughs, frequent

changes in neighboring modules often lead to violations of the

fixed-outline constraints. In response to the above observations and

facts, we propose a two-phase SA framework as shown in Figure 4.

The two phases adopt different module-selecting strategies and

perturbation operations. In the boundary shrinking phase, modules

are classified into two categories: non-positive slack and normal

modules by computing their slack. The annealing perturbation op-

eration actively selects the non-positive slack modules to better

satisfy the fixed-outline constraints. In the solution optimization

phase, we propose a novel perturbation that operates on neighbor-

dissatisfied modules to reduce feedthroughs.

A critical path is defined as the longest path in a floorplan, and

modules on it are non-positive slack modules. There may be mul-

tiple critical paths in a floorplan, with a module possibly located

on more than one critical path. The length of critical paths is equal

to the span of the floorplan. Therefore, the perturbation on non-

positive slack modules may crucially impact the outline span. Fig-

ure 8 illustrates how relocating modules on the critical path can

reduce the floorplan span.

In the first phase of our framework, modules with non-positive

slack in any dimension are more likely to be chosen for pertur-

bation operations. The B*-Tree is commonly used for three main

operations, which are explained in the following examples:

• Op1: Rotate a module. A module is an ideal candidate for this
operation if it has a non-positive slack in one dimension but a

large slack in another, as shown in Figure 8.

• Op2: Relocate a module. This operation tends to operate on
modules with two dimensions of non-positive slack and relocate

it to be a child of the module that has a larger slack than its

shape. That is, we attempt to move it into a large whitespace.

• Op3: Swap two modules. This operation is ideal for combining
two modules with two dimensions of non-positive slack and

one dimension of non-positive slack.

890

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Li et al.

Once the fixed-outline constraints are satisfied, the annealing

process enters the solution optimization phase. It mainly targets

modules that do not expand the floorplan span for perturbation

operations. Area and wirelength optimization are achieved by the

above perturbation operations, while for feedthrough optimization,

a new perturbation operation is proposed:

• Op4: Change the module’s neighbors. Select a module with
minimal neighbor satisfaction and randomly swap it to its

neighborhood-demanding child nodes.

In a floorplan, we analyze each module’s neighbor satisfaction

during feedthrough calculation and compare it to its neighbor re-

quirement, which is determined by the netlist indicating ideal neigh-

boring modules.

3.4 Cost Evaluation

The optimization objective comprises five metrics: area, wirelength,

common edge length, feedthrough wirelength, and the number of

feedthroughed modules. The cost of the floorplan is calculated by

summing weighted metrics. However, the wide range in size and

unclear relationship between measurements necessitate additional

pre-floorplanning iterations to estimate appropriate weights. To

streamline this process, we develop a normalizing method to predict

the expectations of each metric.

It’s straightforward to prove that the averageManhattan distance

between every 2 modules in a 𝑛 × 𝑛 square grid is
2(𝑛2−1)
3𝑛−2 . If we

divide a chip consisting of 𝑛 modules into a
√
𝑛 × √

𝑛 uniform
square grid, each grid’s width and height is 𝑆 . Therefore, under
ideal even partitioning, the total half-perimeter wirelength (HPWL)

expectation of𝑚 nets can be calculated as:

𝐻𝑃𝑊𝐿 =
2𝑚(𝑛 − 1)
3
√
𝑛 − 2 × 𝑆. (6)

Similarly, considering the net 𝑁𝑖 may have 0 to (𝑛𝑖 −1) feedthrough
paths, the expectation number of feedthroughed modules 𝐹𝑇𝐻𝑛𝑢𝑚

and the feedthrough wirelength 𝐹𝑇𝐻𝑤𝑙 can be computed as:

𝐹𝑇𝐻𝑛𝑢𝑚 =
2(𝑛 − 1)
3
√
𝑛 − 2 ×

𝑚∑
𝑖=1

𝑛𝑖 − 1
2

,

𝐹𝑇𝐻𝑤𝑙 = 𝐹𝑇𝐻𝑛𝑢𝑚 × 𝑆.

(7)

Assuming that 𝑁𝑖 is evenly partitioned and that each module is

closely spaced, the parameter 𝑟𝑖 represents the largest perfect square
root that is less than or equal to 𝑛𝑖 . The expectation value of com-

mon edge length 𝐶𝐸𝑙𝑒𝑛 can be estimated using:

𝐶𝐸𝑙𝑒𝑛 =
1

2

𝑚∑
𝑖=1

2(𝑛𝑖 − 𝑟𝑖) − (𝑛𝑖 > 𝑟2𝑖) − (𝑛𝑖 > 𝑟2𝑖 + 𝑟𝑖). (8)

Finally, we can obtain the total cost 𝜙 , defined as:

𝜙 = 𝛼
𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙

𝐴𝑟𝑒𝑎
+ 𝛽

𝐻𝑃𝑊𝐿

𝐻𝑃𝑊𝐿
− 𝛾

𝐶𝐸𝑙𝑒𝑛
𝐶𝐸𝑙𝑒𝑛

+ 𝛿

(
𝐹𝑇𝐻𝑛𝑢𝑚

𝐹𝑇𝐻𝑛𝑢𝑚
+ 𝐹𝑇𝐻𝑤𝑙

𝐹𝑇𝐻𝑤𝑙

)
,

(9)

where 𝛼, 𝛽,𝛾, 𝛿 are the weight of each metric, and 𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 is the
sum of all modules’ area.

4 EVALUATION

FTAFP is implemented in C++ and operates in single-threadedmode

on a Linux system, with Intel(R) Xeon(R) Silver 4214R @ 2.4GHz

and 128GB memory. The FTAFP framework is compared with three

competitive heuristic-based methods based on the topological rep-

resentation: Corblivar [13], SP-FOFP [11], and CB-Tree [15]. Where

CB-Tree is reproduced by ourselves, SP-FOFP is an open executable

and Corblivar is open source. It should be noted that the goal of

our work is feedthrough optimization, which has not been consid-

ered in previous works. Therefore, we chose the publicly available

floorplaners mentioned above as our baselines. The test cases are

derived from the GSRC [22] and MCNC [23] benchmarks. To im-

prove the reliability of the results and reduce the impact of random

errors from the heuristic algorithm, each benchmark is executed 10

times using our approach and baselines to ensure fair and precise

measurements. The results are averaged in the same environment.

4.1 Results without Feedthrough Optimization

First, to verify the effectiveness of the SCB-Tree and optimization

framework, we test the performance of the general fixed-outline

floorplanning using FTAFP without feedthrough optimization. The

evaluation metrics used in this experiment are the half-perimeter

wirelength (HPWL), aspect ratio (AR), and CPU runtime (RT). Sim-

ilar fixed-outline and AR constraints have been added to all base-

lines for a fair comparison. As shown inTable 1, FTAFP has reduced

HPWL compared to all baselines under the fixed-outline constraint

and strictly meets the aspect ratio constraint. Our FTATP results

in average wirelength reductions of 23%, 12%, and 6% over [13],

[11] and [15], respectively. This improvement can be attributed to

the combination of slack computation and corner stitching. The

proposed SCB-Tree makes full use of the whitespace, resulting in a

more compact overall floorplan and thereby reducing wirelength.

Due to the slack computation when packing the module, there is a

slight increase in the runtime of around 13% compared to [15].

4.2 Results with Feedthrough Optimization

As the main optimization goal of this work, we test the performance

of the proposed feedthrough optimization method. The constraints

and settings are the same as in the previous subsection, except that

the feedthrough optimization is added. The results are illustrated in

Table 2. We developed an evaluator to analyze feedthrough-related

metrics for the baselines by parsing their floorplan results and

computing all metrics using the same model as our floorplanner.

Ourmethod demonstrates significant improvements in feedthrou-

gh optimization compared to the three baselines. Compared to the

CB-Tree, the FTNUM and FTWL metrics are reduced by 12% and

28% on average respectively, and CEL is also significantly improved

by 25%. HPWL increased by only 4%, which is considered acceptable

in the hierarchical design of large-scale SoC. Additionally, Table 2

demonstrates that our methods excel particularly in cases with

more multi-module nets(e.g. ami33 and ami49) and a large number

of modules(e.g. n100 and n200). For the former, the reason lies in our

net simplification which encourages more adjacent arrangements

of modules in the same net. Larger-scale designs tend to have more

feedthrough wires with longer spans and traveling through more

modules. Consequently, our feedthrough optimization proves to be

more effective in these scenarios.

891

FTAFP: A Feedthrough-Aware Floorplanner for Hierarchical Design of Large-Scale SoCs ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Table 1: Comparison of baselines with FTAFP, without feedthrough optimization.

Benchmarks Corblivar [13] SP-FOFP [11] CB-Tree [15] FTAFP
Case # Modules # Nets HPWL AR RT HPWL AR RT HPWL AR RT HPWL AR RT

n10 10 118 47,899 1.02 0.05 43,071 1.00 0.1 42,007 0.99 3.21 40,778 1.01 3.25
n30 30 349 175,684 0.98 0.43 160,774 1.00 0.85 126,952 0.98 6.51 111,877 1.00 7.90
n50 50 485 208,356 0.74 1.22 193,478 1.00 2.69 165,783 0.99 8.12 162,011 1.00 10.25
n100 100 885 328,202 0.90 6.13 304,279 1.00 7.91 310,582 1.00 21.19 293,497 1.00 24.31
n200 200 1585 607,503 0.86 33.04 554,992 1.00 31.71 546,521 1.00 42.80 524,989 1.00 52.01
ami33 33 123 99,355 1.08 0.48 91,037 1.00 0.97 96,166 1.01 6.69 90,503 1.00 7.16
ami49 49 408 1,202,310 0.99 0.96 1,010,759 1.00 2.06 1,042,454 1.01 7.50 1,007,618 1.00 8.46

Ratio 1.23 0.94 0.18 1.12 1.00 0.24 1.06 0.99 0.87 1.00 1.00 1.00

Table 2: Comparison of HPWL, common edge length (CEL), feedthrough number (FTNUM) and feedthrough wirelength (FTWL).

Case
Corblivar [13] SP-FOFP [11] CB-Tree [15] FTAFP

HPWL CEL FTNUM FTWL HPWL CEL FTNUM FTWL HPWL CEL FTNUM FTWL HPWL CEL FTNUM FTWL

n10 47,899 4,369 149 15,440 43,701 4,489 146 14,098 42,007 4,619 141 11,427 43,625 4,934 138 10,935

n30 175,684 1,698 483 52,325 160,774 2,363 478 46,433 126,952 2,142 467 47,742 142,507 3,143 454 43,181

n50 208,356 2,436 798 110,124 193,478 1,645 807 102,863 165,783 2,186 776 109,105 182,524 4,141 744 91,213

n100 328,202 2,359 1,474 179,963 304,279 3,339 1,781 146,137 310,582 2,052 1,461 176,137 304,584 6,545 1,358 134,075

n200 607,503 1,345 2,971 409,287 554,992 4,012 3,442 306,281 546,521 4,263 3,672 386,471 549,286 6,053 2,802 294,796

ami33 99,355 45,822 172 45,810 91,037 40,376 194 62,531 96,166 58,730 186 51,495 93,674 67,886 152 29,848

ami49 1,202,310 39,634 824 2,149,060 1,010,759 105,112 722 1,180,280 1,042,454 139,426 662 1,089,270 1,047,228 177,436 597 836,962

Ratio 1.13 0.52 1.13 1.55 1.02 0.65 1.15 1.34 0.96 0.75 1.12 1.28 1.00 1.00 1.00 1.00

5 CONCLUSION

We propose a feedthrough-aware floorplanner named FTAFP to

solve the feedthrough challenge faced by the hierarchical design of

large-scale SoCs. To the best of our knowledge, we are the first to

model and optimize the feedthrough problem in floorplanning. We

introduce SCB-Tree to better satisfy the fixed-outline constraint

and optimization objectives and propose a two-phase SA frame-

work with targeted perturbation operations. Experimental results

demonstrate that FTAFP can significantly optimize objectives such

as feedthrough wirelength, quantity, and common edge resources,

thereby better meeting actual design needs.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program of

China (2022YFB2901100), the National Natural Science Foundation

of China (No. 62404021), the Beijing Natural Science Foundation

(No. 4244107, QY24216), theMIND project (MINDXZ202404), and AI

Chip Center for Emerging Smart Systems (ACCESS), Hong Kong.

REFERENCES
[1] S. Garg and N. K. Shukla, “A study of floorplanning challenges and analysis of

macro placement approaches in physical aware synthesis,” International Journal
of Hybrid Information Technology, vol. 9, no. 1, pp. 279–290, 2016.

[2] I.-L. Tseng, “Challenges in floorplanning and macro placement for modern SoCs,”
in ACM International Symposium on Physical Design (ISPD), 2024, p. 71–72.

[3] J. Shin, J. Darringer, G. Luo, M. Aharoni, A. Lvov, G.-J. Nam, and M. Healy,
“Floorplanning challenges in early chip planning,” in IEEE International System-
on-Chip Conference (SOCC), 2011, pp. 388–393.

[4] Y. Hong, C. Huang, Y. Gao, and C. Li, “Channel based soc feedthrough inser-
tion methodology,” in International Conference on Communications, Circuits and
Systems (ICCCAS), 2022, pp. 125–130.

[5] Y. Zhang, A. Chakraborty, S. Chowdhury, and D. Z. Pan, “Reclaiming over-the-IP-
block routing resources with buffering-aware rectilinear Steiner minimum tree
construction,” in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012, pp. 137–143.

[6] F. Huang, D. Liu, X. Li, B. Yu, and W. Zhu, “Handling orientation and aspect
ratio of modules in electrostatics-based large scale fixed-outline floorplanning,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2023,
pp. 1–9.

[7] X. Li, K. Peng, F. Huang, and W. Zhu, “PeF: Poisson’s equation-based large-
scale fixed-outline floorplanning,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 42, no. 6, pp. 2002–2015, 2023.

[8] M. Kuwano and Y. Takashima, “Stable-lse based analytical placement with overlap
removable length,” in Workshop on Synthesis And System Integration of Mixed
Information technologies (SASIMI), 2010, pp. 115–120.

[9] A. B. Kahng and Q.Wang, “Implementation and extensibility of an analytic placer,”
in ACM International Symposium on Physical Design (ISPD), 2004, pp. 18–25.

[10] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement
based on rectangle-packing by the sequence-pair,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 15, no. 12, pp. 1518–
1524, 1996.

[11] Q. Xu, S. Chen, and B. Li, “Combining the ant system algorithm and simulated
annealing for 3D/2D fixed-outline floorplanning,” Applied Soft Computing, vol. 40,
no. C, p. 150–160, 2016.

[12] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, “Corner block
list: An effective and efficient topological representation of non-slicing floorplan,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2000,
pp. 8–12.

[13] J. Knechtel, E. F. Y. Young, and J. Lienig, “Structural planning of 3D-IC intercon-
nects by block alignment,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2014, pp. 53–60.

[14] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-Trees: a new represen-
tation for non-slicing floorplans,” in ACM/IEEE Design Automation Conference
(DAC), 2000, p. 458–463.

[15] H.-F. Tsao, P.-Y. Chou, S.-L. Huang, Y.-W. Chang, M. P.-H. Lin, D.-P. Chen, and
D. Liu, “A corner stitching compliant B*-tree representation and its applications
to analog placement,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2011, pp. 507–511.

[16] Y. Liu, Z. Ju, Z. Li, M. Dong, H. Zhou, J. Wang, F. Yang, X. Zeng, and L. Shang,
“GraphPlanner: Floorplanning with graph neural network,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 28, no. 2, 2022.

[17] Y. Liu, H. Zhou, J. Wang, F. Yang, X. Zeng, and L. Shang, “Hierarchical graph
learning-based floorplanning with dirichlet boundary conditions,” IEEE Transac-
tions on Very Large Scale Integration Systems (TVLSI), vol. 32, no. 5, pp. 810–822,
2024.

[18] Z. He, Y.Ma, L. Zhang, P. Liao, N.Wong, B. Yu, andM. D.Wong, “Learn to floorplan
through acquisition of effective local search heuristics,” in IEEE International
Conference on Computer Design (ICCD), 2020, pp. 324–331.

[19] Q. Xu, H. Geng, S. Chen, B. Yuan, C. Zhuo, Y. Kang, and X. Wen, “GoodFloorplan:
Graph convolutional network and reinforcement learning-based floorplanning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 41, no. 10, pp. 3492–3502, 2021.

[20] M. Amini, Z. Zhang, S. Penmetsa, Y. Zhang, J. Hao, and W. Liu, “Generalizable
floorplanner through corner block list representation and hypergraph embedding,”
in ACM International Conference on Knowledge Discovery and Data Mining (KDD),
2022, pp. 2692–2702.

[21] J. Cong and M. Xie, “A robust mixed-size legalization and detailed placement
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 27, no. 8, pp. 1349–1362, 2008.

[22] W. Dai, L. Wu, and S. Zhang. (2000) GSRC benchmarks. [Online]. Available:
http://vlsicad.eecs.umich.edu/BK/GSRCbench/

[23] M. C. of North Carolina (MCNC). (2000) MCNC benchmarks. [Online]. Available:
http://vlsicad.eecs.umich.edu/BK/MCNCbench/

892

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

