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Abstract—In order to optimize the process of accelerating
large-scale neural network (NN) on field-programmable gate
array (FPGA), this paper presents and optimizes the automatic
flow based on HeteroCL and Xilinx Vitis HLS. This flow could
transform python-based NN description to Verilog RTL running
on FPGA. To improve its quality of result (QoR), many key
optimization methods are proposed for the high-level synthesis
(HLS) input, including fixed-point quantization, loop pipelining,
convolutional buffer and others. To prove the feasibility of
proposed optimization techniques, the convolutional NN (CNN) is
selected as the experimental case study. And the results show that
the delay and power consumption due to optimization techniques
are significantly reduced.

Index Terms—High-Level Synthesis, FPGA, Python-to-C,
Compiling Optimization, Acceleration

I. INTRODUCTION

Neural Network (NN) has been widely used in computer
vision, natural language processing and other fields because
of its excellent feature extraction ability. Field-Programmable
Gate Array (FPGA) has the characteristics of low power
consumption, low latency, parallel computing, and reconfigura-
bility, which just meet the needs of neural network inference
in machine learning, making it a high-quality carrier of neural
networks.

With the increase of system technology and complexity,
the high-level synthesis (HLS) technique is used to speed
up the hardware acceleration based on FPGA. HLS has the
ability to transform the logic structure described by high-level
programming languages into the hardware implementation
described by low abstract level languages. Vitis HLS from
Xilinx is a successful commercial HLS tool, which has the
advantages of improving development efficiency, accelerating
design iteration, performance optimization, platform portabil-
ity, and verification and debugging support. At the same time,
its tight integration with other Xilinx tools and libraries makes
FPGA development easier and more efficient.

However, although NN has a wide development and appli-
cation prospect on FPGA, most NNs are generated by Python
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language based on frameworks such as Pytorch and Tensor-
Flow, and few of them are implemented by C++ language
that can support Vitis HLS. At the same time, Vitis HLS
has limited optimization in the inference application of NN,
and has high delay and power consumption, which cannot
meet the application requirements. In order to solve these
problems, our idea is to enhance an open-source toolchain to
convert the NN described in Python into C++ code, and then
convert to RTL code by Vitis HLS. Additionally, we customize
several necessary LLVM (Low Level Virtual Machine) passes,
leveraging the open-source front-end portion of the Vitis HLS
[1], to optimize its application functionality. In the subsequent
sections, we will choose CNN as a case study to illustrate
our research and experimentally validate the feasibility of the
optimization techniques.

II. RELATED WORK

In the previous work, Cornell University proposed Hete-
roCL [2] in 2019, an open-source tool that can be used to
translate Python code into C++ code accepted by Vitis HLS.
HeteroCL has a writing habit close to TensorFlow, and the
extended Halide IR(intermediate representation) is converted
into the code or executable files for each platform by the
Halide compiler. It is very suitable for the deployment of
CNN on FPGA. However, HeteroCL still has its shortcomings
in the support of deep learning. After CNN is transformed
into C++ code, there are some problems such as too many
intermediate variables in the network, leading to memory
shortage, simulation stack explosion, high delay and high
power consumption.

Focusing on the problem of the network optimization, Jie
Gong designed a general dynamic fixed-point quantization
method for CNN [3]. The appropriate integer bits are found
through formula (2.1), where x is the number to be quantized,
lint is the length of integer bits and lbmax(x) represents the
position of the highest bit (the leftmost non-zero bit) in the
binary representation of x.

lint = lbmax(x) + 1 (2.1)

However, the output of each layer of the CNN also depends
on the weight of the input of the layer. Adding one bit in this
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method cannot solve the overflow problem, and the workload
is also increased by repeatedly adjusting the test.

Considering the influence of the input of each layer on the
calculation of quantization bit width, Xiaokang Lei proposed
Kullback-Leibler (KL) divergence to calculate the scale of
the input parameter fixed-point [4]. This method reduces the
amount of calculation while ensuring little loss of accuracy,
but it requires a significant amount of pre-training to find the
threshold, which requires large computational overhead for
large-scale networks.

In terms of the optimization of convolutional calculation,
Chen Zhang discussed the method of parallel convolution
calculation of CNN in the HLS stage from two aspects of
computational optimization and memory access optimization
[5]. For loop unrolling, this paper divides whether the iterator
corresponding to each loop layer participates in array address-
ing into three relationships. Different relationships produce
different hardware implementations. and the loop correspond-
ing to the iterator with the minimum cost is selected to
unroll according to the relationship, which partially solves the
problem of how to select loops for loop unrolling. However,
the loop number and loop unrolling factor, which mainly affect
the parallelism and computational cost of the network, are not
discussed.

In order to solve some of the above problems and optimize
the network performance as much as possible, the automa-
tion framework for FPGA agile development and the CNN
inference optimization scheme based on FPGA designed by us
are introduced in the following section, and the experimental
evaluation results are given in the Results section.

III. METHODS

In this section, we implemented an automated design flow.
Based on the networks designed by the flow, we implemented
optimization schemes such as quantized bit-width, data trans-
mission through queues, memory access optimization through
buffer optimization, and convolutional layer computation op-
timization.

A. Automated design flow for an agile FPGA development

In this automatic design flow, we hope that the final effect
can be achieved:The user realizes a neural network using
PyTorch and rewrote it to be implemented based on HeteroCL,
and the subsequent steps of compiling the NN into the HLS
code, synthesis, simulation and implementation are realized
by the flow. Therefore, based on HeteroCL, we improved the
process of designing neural networks on FPGA. The design
and simulation verification process is illustrated in Fig. 1. The
green part is completed by the programmer, while the blue
part is automatically executed by the flow.

In the process, to facilitate users in building network models,
we define the interface support for HeteroCL’s deep learning,
and the current supported interfaces are shown in TABLE I.
By following the interface description and calling the interface
functions, we can quickly build the required convolutional
layers. For network layers that require extension, one only

Fig. 1: Automated design flowcharts

needs to invoke HeteroCL’s interfaces and functions, such as
hcl.compute, hcl.reduce axis, hcl.sum, etc., for defining. This
allows for the rapid declaration, iteration, and computation of
tensor operators within the network.

Interface name Interface description
conv2d nchw 2D convolution layer without bias in nchw order
conv2d nchw bias 2D convolution layer with bias in nchw order
conv2d nhwc 2D convolution layer without bias in nhwc order
avg pool2d nchw 2D average pooling layer in nchw order
avg pool2d nhwc 2D average pooling layer in nhwc order
maxpool2d 2D max pooling layer in nchw order
softmax2d 2D softmax layer in nchw order
logsoftmax2d 2D log softmax layer in nchw order
linear 2D linear layer in nchw order
relu 2D ReLU layer
flatten Convert multi-dimensional array to 2D array
flatten nchw Convert 4D array in nchw order to 2D array
dense 2D fully connected layer

TABLE I: Interface name and description

After constructing the NN, in the process, the first step
is to use the hcl.placeholder function to create a place-
holder tensor for each input and output based on their
dimensions. Then, the hcl.create scheme function is called
to build a Scheme, and quantization operations are per-
formed at this stage. Next, based on the computation
scheme, hcl.create schedule from scheme is used to construct
a Schedule. On the schedule, each Stage can be obtained using
the name parameter, and interfaces can be invoked to optimize
these stages specifically. Subsequently, the hcl.build function
is called, and the parameters for the target are set. For the
FPGA platform, the target is set to vhls, and the return value
of hcl.build is the HLS code represented as a string. At this
point, saving it to a file completes the process.
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In order to solve the high latency and high power consump-
tion of CNN inference, We also define optimization options
that can be enabled on Schedule, and the implementation ideas
of specific functions will be given in the following subsections.

B. Fixed-point quantization scheme based on data distribution

This scheme is applicable to neural networks and is divided
into global fixed-point quantization and local fixed-point quan-
tization. Global fixed-point quantization is to find a bit width
that can represent all the global numbers, and apply all the
numbers involved in the calculation to this bit width. Local
fixed-point quantization, on the other hand, computes a single
bit width for each layer of the network and applies this bit
width to all the numbers participating in the computation of
that layer. Because local fixed-point quantization is equivalent
to applying global fixed-point quantization to each layer, and
HeteroCL automatically converts the bit-width when transfer-
ring data between layers with different bit-width, this section
mainly introduces global fixed-point quantization.

Taking CNN as an example for illustration:For most CNNs
with reasonable initialization and good training, their weights
basically follow a certain statistical distribution. The distri-
bution of the weights can be described by the maximum,
minimum, average, median and variance of the statistical
weights. Due to the data in the distribution set, the difference
between the maximum value and the minimum value is small,
the mean and median are close, and the variance is small,
so these parameters can be used as the weight representative
to determine the bit width. We use the maximum value, the
minimum value and the average value to calculate the integer
bit width and decimal place width respectively, and take the
combination of the largest integer bit width and decimal place
width as the bit width. This process is organized into the
pseudo-code as shown in Algorithm 1.

Algorithm 1 Global fixed-point Quantization when the distri-
bution is concentrated
Require :max,min,mean

1: Initialize maximum integer bit width max int width=0,
maximum decimal bit width max dec width=0, fixed-
point quantization bit width width

2: for value in [max,min,mean] do
3: Calculate the integer part of the value int part and the

decimal part dec part
4: Integer bit width int width=[log2(abs(int part))]+1
5: if 10≤ int part

dec part<100 then
6: dec width=4
7: else if int part

dec part≥100 then
8: dec width=1 or dec width=0
9: else if int part=0 or int part

dec part≤10 then
10: dec width=7 or dec width = 10, int width=0
11: end if
12: max int width = max(max int width, int width)
13: max dec width = max(max dec width, dec width)
14: end for
15: width=max int width+max dec width

In Algorithm 1, different integer and fractional bit widths
are set based on the distribution of weights. When the value of
the integer part of the weight is over a hundred times greater
than the value of the fractional part, we decrease the precision
of the fractional part by setting the fractional bit width to 1
or even 0. When the difference between the integer part and
the fractional part of the weight is not significant, we increase
the precision of the fractional part by setting the fractional bit
width to 7 or 10 bits, ignoring the integer part.

In the algorithm, the bit width of the weight is determined,
considering the influence of the input bit width on the output
bit width, the output bit width can be calculated by equations
(3.1) and (3.2). Here, Oint and Odec represent the bit widths of
the output’s integer and decimal parts, Iint and Idec represent
the bit widths of the input’s integer and decimal parts, and
Wint and Wdec represent the bit widths of the weight’s integer
and decimal parts, respectively.

Oint = Iint +Wint + 1 (3.1)

Odec = max(Idec,Wdec) (3.2)

C. Data Transfer Method for Intermediate Layer

In the memory access optimization scheme for NN, we
introduce the stream transmission structure, build a FIFO
queue, and use the write and read interface to write and read
data. On the premise of paying attention to the order of writing
and reading data in different layers is consistent, the dataflow
pragma in the main function (top) can be used to realize the
parallel operation of the main function.

To realize the function of automatically converting inter-
layer input and output into FIFO queues, we can call HeteroCL
the .to method of the Schedule class, which is defined as
follows:

def to(self, tensor, dst=None, fifo depth=-1)
For the dst parameter, the target Stage to stream can be

obtained by subscribing Schedule with name as described ear-
lier, and similarly for the tensor parameter, top.name is used.
Because the calculation of the network layer is pipelinated,
the probability of blocking is small, usually the fifo depth
parameter is set slightly greater than the channel.

According to the aforementioned approach, employing
FIFO queues for data read and write not only reduces data
overhead but also facilitates computation pipeline between
layers, thereby reducing network latency.

D. Convolutional buffer settings

In the previous section we set up the FIFO queue to
reduce the network latency. But it should be noted that the
convolutional access to an element tends not to be only once,
so our reading after the FIFO queue introduces a row buffer
and a window buffer. The buffer will record the input, while
the convolution will be calculated by reading data from the
buffer.

For the implementation of the buffer, we use the reuse at
function of Schedule, which is declared as follows, where
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target is the object to be reused, parent is the phase of reuse,
and axis is the dimension in which data reuse occurs:

def reuse at(self, target, parent, axis, name= None)
The buffer is set so that when calculating the convolution,

for large weight arrays, the weight value of a channel can be
read directly through the window buffer, reducing the number
of reads from external storage.

E. Parallel computation of convolution

In our design, we combine loop pipelining and loop un-
rolling to optimize the convolution computation for CNNs.
According to the algorithm proposed in this paper [5], loop
pipelining/loop unrolling is performed on the convolution
selection dimension using FIFO queues and buffers. As shown
in Algorithm 2, the main calculation parts rc, ry and rx
correspond to the channel, height and width of the 3D con-
volution respectively, xx and yy correspond to the indices
of the height and width of the output feature map. v131
corresponds to the index of the row buffer, and v135 and
v136 respectively correspond to the vertical and horizontal
indices of the window buffer. To achieve better results, we
opted for loop pipelining/unrolling in the inner loop with no
data dependencies and more computations, as illustrated by
adding the pipeline pragma below the line for for (int rc=0;
rc<3; rc++). In HeteroCL, the same effect can be achieved
by calling the pipeline method of Schedule and passing the
corresponding dimension (axis) of the Stage corresponding
to the loop as a parameter.

At the same time, in order to work with the loop pipelining
and loop unrolling to produce the desired effect in Vitis HLS,
we perform the array partitioning in the dimension of the
loop unrolling/loop pipelining of the array participating in the
calculation and hand it to the pipeline or parallel module for
processing.

The above ideas are not only suitable for the optimization
of parallel computation of convolution, but also for other
computational layers.

F. Loop merging

Loop merging is also used to merge some network layers
that are continuously calculated and the outer loop is ex-
actly the same, without passing intermediate results, so as to
greatly reduce the amount of memory access. This solution
is only suitable for some networks. Such layers are usually
BatchNorm layers and ReLU activation functions layers. These
calculations do not change the input dimension and are usually
performed continuously.

The implementation of this function relies on the Stage
.compute at function of HeteroCL, which stores the names
of all layers in a list during the inspection of the network,
and then slides through the list with a serial port of length
two to check whether the names meet the prefix batchnorm
and relu, respectively. If it is, the Stage is obtained from the
Schedule with the name of the layer as the index. The Stage
of the BatchNorm layer calls compute at to aggregate the
calculation of the BatchNorm layer into the loop dimension of

Algorithm 2 Example of 4D convolutions with FIFO queues
and row and window buffering

1: for (int nn=0;nn<2;nn++) do
2: ...//Omitted outer loops
3: for (int v131=0;v131<3;v131++) do
4: //update the row buffer
5: end for
6: if (yy=2)>=0 then
7: for (int v135=0;v135<3;v135++) do
8: for (int v136=0;v136<3;v136++) do
9: //update the window buffer

10: end for
11: end for
12: if (xx-2)>=0 then
13: float sum=0;
14: for (int rc=0;rc<3;rc++) do
15: for (int ry=0;ry<3;ry++) do
16: for (int rx=0;rx<3;rx++) do
17: //convolution computation
18: end for
19: end for
20: end for
21: ap fixed<10,4> v155=sum;
22: conv1 x 0 conv1.write(v155);
23: //HLS::Stream write
24: end if
25: end if
26: end for

the innermost layer of the ReLU layer to reduce the memory
access and the number of network layers.

IV. RESULTS

Based on the scheme before, this section takes three convo-
lutional neural networks as examples to verify the rationality
of the numerical bit width of the network determined by the
fixed-point quantization scheme, and apply this bit width to
verify the rationality and practical effect of the comprehensive
optimization scheme.

A. Experimental Setup

The experiment was implemented on Xilinx Virtex7 with
a clock cycle of 10ns. The software was based on Linux
ubuntu 4.4.0-210-generic platform, Vitis HLS v2021.2 (64-
bit), Vivado v2021.2 and HeteroCL v0.5 with MLIR.

B. Results of fixed-point quantization experiments

Network Fixed point bit width
integer bit width fractional bit width

Lenet-5 12 12
Mobilenet-v1 8 16

Resnet-18 8 16

TABLE II: Fixed-point quantization bit-width of each
network calculated according to the fixed-point quantization

scheme proposed in subsection B
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TABLE III: Experimental results of delay and power consumption for ablation experiments optimized separately for each
scheme and for the integrated optimization scheme

(a) LeNet-5

(b) MobileNet-v1

(c) ResNet-18

Fig. 2: Line plots of accuracy, delay and power consumption
on the respective data sets for the three baseline network
architectures with four different fixed-point bit widths and

32-bit floats

In the experiments, LeNet-5 used MNIST dataset for hand-
written digit classification task (10 classifications), MobileNet-
v1 and ResNet-18 used Cifar-100 dataset for image classi-
fication task (100 classifications), and the input batch size
was 2. The rationality of the scheme is quantified by the
prediction accuracy of fixed-point numbers and floating-point
numbers. Compared with the weights obtained by Pytorch
training under the same conditions, the experimental results are
LeNet-5:93.6%, MobileNet-v1:77.4%, and ResNet-18:76.2%,
respectively, which are similar to the information on the public
leaderboard [6], and the pre-training weights are reasonable.

TABLE II shows the results of fixed-point quantization
which are derived based on the data quantization scheme
mentioned in Section III-B. At the same time, three different
fixed-point bit widths were selected in the experiment for
comparison with floating-point numbers in terms of accuracy,
delay, and power consumption. In order not to affect the
efficiency of hardware implementation, the selected four fixed-

point bit width is aligned to 4 bits.
The experimental results of data quantization schemes for

the three networks are shown in Fig. 2. The final experi-
mental results showed the quantization scheme has about 3%
difference in accuracy with floating-point number, and the
delay and power consumption are significantly lower than
that of floating-point number. It proves that the fixed-point
quantization scheme in this paper is reasonable and effective.

C. Inference optimization experimental results

According to the previous scheme, the final composition of
the comprehensive optimization scheme of the three networks
is shown in TABLE IV. In the table, we use !for applicable,
and%for deprecation. At the same time, we designed ablation
experiments to reflect the optimization effects. Through Vitis
HLS, co-simulations were conducted separately for the three
network susing the fixed-point bit width data in TABLE II,
obtaining the resource expenditures before and after applying
their respective optimization methods, as shown in TABLE III.

network fixed point quantization stream transfer+buffer loop pipelining loop unrolling loop merging
Lenet-5 ! ! % ! %

Mobilenet-v1 ! ! ! % !

ResNet-18 ! ! ! % !

TABLE IV: Composition of comprehensive optimization
schemes for the three networks

It can be seen from the table that under the action of the
comprehensive scheme, the delay and power consumption of
LeNet-5 are reduced to 11.8% and 63.7%, respectively. The
delay and power consumption of MobileNet-v1 are reduced to
6.9% and 56.4%, respectively. The delay and power consump-
tion of ResNet-18 are reduced to 2.66% and 59.5%, respec-
tively, which reflects the effectiveness of the comprehensive
optimization scheme.

V. CONCLUSIONS

This paper proposes and implements an FPGA-based opti-
mization process for Neural Network (NN) inference. Through
HeteroCL, Vitis HLS and Vivado tools, we successfully im-
plemented a process that can automatically deploy a CNN
implemented in Python to FPGA. In the HLS stage, the opti-
mization methods including quantization, loop pipelining and
loop merging are implemented, which reduces the delay and
power consumption of network operation, and significantly
improves the efficiency of network operation.
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