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Abstract—High-level synthesis (HLS) is a popular method that
allows designers to describe the behavior-level functionality and
automatically generates efficient register-transfer level (RTL)
descriptions. In HLS, dataflow is the key micro-architecture
to achieve high parallelism. However, strict conditions such
as sequential access on the potential channels often limit the
streaming dataflow. To settle this issue, this paper proposes an
efficient array partitioning method for the streaming dataflow
inference. The key is to explore the potential array partition-
ing mode that matches the sequential access requirements by
streaming channels. An experimental case study is presented
on the inference of the convolutional neural networks (CNN).
It indicates that the proposed method can achieve about 28.6%
performance improvements compared with the default dataflow,
with the cost of 7.2% power increasement.

Index Terms—High-level Synthesis, Streaming Dataflow, Ar-
ray Partitioning, FPGA

I. INTRODUCTION

High-performance computing and data-intensive applica-
tions, such as machine learning, are becoming increasingly
common. For these designs, the field-programmable gate ar-
ray (FPGA) is a good choice to bring the benefits of hardware
acceleration. However, the traditional flow starting from the
register-transfer level (RTL) is challenging for these large
and complex designs, because performing RTL development
is very time-consuming and error-prone [1]. In comparison,
high-level synthesis (HLS) can generate RTL descriptions
(e.g., Verilog/VHDL) from behavior-level languages (e.g.,
C/C++/OpenCL). HLS can reduce the development time, im-
prove the ability of fast testing and simulation, and narrow the
huge gap between software engineers and FPGA acceleration.
Until now, there are many commercial HLS tools [2]–[4],
and Xilinx Vitis HLS [5] is a well-known tool in the FPGA
domain.

The main challenge for HLS is how to generate expected
good-quality RTL designs. Therefore, HLS tries to convert
the serial instruction lists into equivalent logical circuits and
achieve good acceleration through parallelism. To achieve
this target, commercial HLS tools often support many syn-
thesizable user-control knobs, including pragmas/directives

† Corresponding Author
This work is partially supported by National Key R&D Program of China

(2022YFB2901100) and Beijing Natural Science Foundation under Grant
4244107.

and global options [6]. These pragmas include pipeline, loop
unrolling, dataflow, array partitioning, etc. Users can control
them to generate different expected microarchitectures based
on the same input design. This paper will focus on dataflow
and array partitioning optimizations.

Dataflow is one of the important optimization methods
used to achieve task-level parallelism. It has two micro-
architectures based on different buffer implementation strate-
gies, i.e., the ping-pong dataflow and the streaming dataflow.
Streaming dataflow has both higher parallelism and lower
architecture complexity than ping-pong dataflow. Generally, it
could bring more performance improvement. However, it has
very strict conditions on HLS coding styles. For example, the
channels for data transfer require first-in and first-out (FIFO)
accessing. Therefore, how to adjust the array accessing orders
and try to match the strict FIFO requirements for the dataflow
inference is a critical challenge.

Until now, HLS research has a very long history [7]–
[10]. And researchers have proposed many methods for array-
partition and dataflow optimizations, especially. However, no
one has ever proposed solutions to settle this issue. For
dataflow optimizations, the academic mainly focuses on the
design space exploration (DSE) algorithms. Its key is how to
select a proper combination of knobs so as to obtain better
performance, including the dataflow knob. For example, Wei
Zhang [11] and Xuehai Zhou [12] proposed different methods
to identify C-level dataflow structures for DSE, but they did
not pay attention to the inference of streaming channels. For
the array-partitioning optimization, current researches mainly
focus on standalone scenarios. For example, Yuxin Wang [13]
proposed block-cyclic optimizations for on-chip memories for
high-data throughput; to accelerate the stencil-based kernel,
Juan [14] proposed a graph-theoretically optimal memory
banking algorithm. In conclusion, unfortunately, there is still
no research focusing on the partitioning problem for the
streaming dataflow channels.

To address this issue, this paper will propose an effi-
cient array partitioning method. To prove its feasibility, an
experimental case study on convolutional neural networks
(CNNs) is presented. The motivation for selecting CNN
is due to its wide usage in image recognition domains.
Its underlying implementation techniques, possess a high
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Fig. 1 Dataflow can achieve task-level parallelism.

degree of computational parallelism and are well-suited for
achieving acceleration through dataflow. However, due to the
discontinuous nature of array read and write operations, it
frequently results in the premature abandonment of dataflow
optimization efforts. Our work shows that by harnessing array
partitioning optimization, it becomes feasible to modify the
actual storage arrangement of arrays, ensuring compliance
with the prerequisites for dataflow applicability and subse-
quently enhancing design performance.

The rest of the paper is organized as follows. Section II
gives the preliminaries and problem formulation. Section III
proposes the array partitioning method and describes its
strategy details. Section IV shows the experimental results
of the case study. Section V draws the conclusion.

II. PRELIMINARIES & PROBLEM FORMULATION

A. Streaming Dataflow and Constraints

Dataflow is an optimization micro-architecture used to
achieve task-level parallelism. As shown in Fig. 1, in the code
of the process C, the data is transferred between neighboring
processes sequentially, i.e. the process A should finish before
B starts. However, if B could start beforehand without any
data dependency, A can transfer data to B as early as possible
and drive B based on dataflow. This is the key for the dataflow
structure, which can improve the parallelism between coarse-
grained tasks.

Obviously, it is clear that the key for the dataflow inference
is just the data transferring order between neighboring pro-
cesses. Generally, if the access order is simple and regular,
the data could then be transferred downward faster, and
much more performance improvements could be achieved.
According to different memory channel implementations, the
dataflow can be categorized into two modes: the ping-pong
dataflow and the streaming dataflow.

The ping-pong dataflow is implemented as shown in Fig. 2,
consisting of two buffers known as ping-pong buffers. Task A
acts as the data producer, while task B serves as the consumer.
Buffer1 and buffer2 rotate for read and write. For example,
A writes data to buffer1, simultaneously, B reads data from
buffer2. When buffer1 is full and buffer2 is empty, A starts
to write data to buffer2, and B reads data from buffer1. The
streaming dataflow consists of a FIFO channel, as shown in
Fig. 3. The producer process stores the data in the buffer,

Fig. 2 The illustration of ping-pong buffers.

Fig. 3 The illustration of streaming buffers.

and the consumer process retrieves the data sequentially.
Compared with the ping-pong dataflow, the streaming buffer
only needs to read and write in a continuous space. At the
same time, the streaming buffer can be implemented with a
capacity that is much smaller than the total data size, while
the ping-pong buffer requires twice the entire data space. Thus
the streaming buffer is favored for its ease of implementation
and higher accessing efficiency.

However, the streaming dataflow has very strict constraints.
Since it uses FIFO as the data channel, the producer process
can only perform write operations on the candidate channel
array, while the consumer process can only perform read.
Furthermore, the read and write operations must be consistent
and serial in order. This is the motivation of this work, i.e.,
trying to match the streaming dataflow requirements through
array partitioning.

B. Array Partitioning

Array partitioning is a commonly used optimization di-
rective in HLS, trying to explore the possibility of parallel
memory access on the array. Fig. 4 illustrates the array
partitioning in the HLS tools (Xilinx Vitis HLS [6]), depicting
three methods: block, cyclic, and complete modes.

Because array partitioning enables parallelism in array
access, it is often used together with other strategies targeting
parallel computing. Until now, it is an important part of
the HLS design space exploration. Generally, existing works
usually try to build up the internal relationship between the
array partitioning and final performance. For example, Cilardo
et al. [15] analyzed the optimization effects of combining loop
unrolling and multidimensional memory partitioning. They
mainly consider the impact of memory bank switches brought
by array partitioning. Silitonga et al. [16] conducted research
combining array partitioning with pipeline in the context
of HLS-based optimization for cryptographic modules. Choi
et al. [17] explored the design space by combining loop
unrolling, pipelining, and array partitioning when dealing with
cases of suboptimal HLS automatic optimization.

However, if designers have decided to use streaming
dataflow as the coarse-granularity optimization strategy, how
to match the strict limitations is the most challenging task. For
this special scenario, the array partitioning is usually required
to work together with dataflow, targeting transforming the
array to stream. This paper will focus on how to analyze and
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Fig. 4 Three strategies of array partition in HLS

adjust the array access mode so as to match the requirements
from dataflow streaming channels. Given the remarkable op-
timization effects of streaming dataflow, the array partitioning
technique is the most promising choice to relax its constraints.
To the best of the author’s knowledge, there is no prior work
targeting such a scenario.

C. Problem Formulation

Due to the strict constraints of the streaming dataflow,
if HLS tools cannot ascertain that the candidate channel
array is accessed in sequential order, the target array will be
implemented with the ping-pong buffer. However, if we can
convert non-serial access to continuous access in some way,
then we can utilize streaming dataflow to further improve
performance. Thus, the problem can be formulated as:

Problem 1 (Array Partitioning for Streaming Dataflow Opti-
mization). Given an array T with n elements, each element
T [i] has its own read/write access Ac[i], where Ac is a
permutation from 1 to n. The objective is to partition T
into m sub-arrays {T1, T2, ..., Tm}, and guarantee that: for
each sub-array Tx (x ∈ {1, ...,m}), Ac[k + 1] = Ac[k] + 1
(k ∈ {1, ..., size(Tx)− 1)}).

III. METHODOLOGY

To solve the problem above, this section will propose an
array partitioning method to match the streaming channel
requirements.

A. Overall Flow

To help designers accelerate the software algorithms, we
have built up a framework to infer dataflow automatically.
This overall flow is shown in Fig. 5, where the green part is
the main work of this paper.

The first three steps are used to check if the dataflow
pragma can be performed or not. First, focus on the target
function region, which only contains multiple sub-function
calls. Because Xilinx HLS tool has strict coding style re-
quirements, and cannot extract and generate sub-process
easily. Then for each pair of neighboring sub-function calls
(process), find the common array parameters as the potential
candidate channels. Third, for each candidate channel, judge

if it is both write-only in the producer process and read-
only in the consumer process. The streaming channel cannot
tolerate the scenario of read-write mix access.

After the dataflow region inference, the focus is to judge
whether the access order on each candidate channel is se-
quential. If not, the array will be synthesized to a ping-
pong buffer originally, as indicated by the red arrow in
Fig. 5. However, this step misses many possible streaming
optimizations. For example, the access hops with an order
of arithmetic progression. If the accessed index could be
recombined under the rule of no data dependency conflict,
we could refine the array access order to match the streaming
requirements. Therefore, a partition-based method is proposed
in this flow which tries to split the target array into multiple
small channels to guarantee continuous access. Then these
small channels could be synthesized to multiple dataflow
FIFOs running in parallel.

If the target array is multi-dimensional, it will be firstly
flattened into a one-dimensional array in an iteration order,
to ease the mode matching. The key is the access analysis
part. It will decide if array partitioning can help or not, which
partitioning strategy is the best choice, and how to guarantee
both continuous access and no data dependency conflict. After
the partitioning plan is decided, the array partitioning will take
action next. Finally, the stream depth must be decided and set
to avoid dataflow deadlock.

B. Access Analysis & Partitioning

First of all, the access order on the candidate array channel
should be consistent, both for the data producer and the con-
sumer processes. The array Ac, accessing the array T , needs
to follow the pattern C: (if the array is multi-dimensional,
it should be flattened into the one-dimensional array in an
iteration order).

C(n, t,m) = B(1, t,m), B(2, t,m), ..., B(n, t,m)

B(i, t,m) = A1(i,m), A2(i,m), ..., At(i,m), i ∈ [1, n]

Aj(i,m) = pij , p
i
j + 1, ..., pij +m− 1, j ∈ [1, t]

pij = (k − 1) ∗ n ∗m+m ∗ (j − 1).

(1)

The Mode C means that Ac (C) can be cut in n cycles.
Each cycle (B) is composed of t serial parts (Aj), and each
of them has m blocks. Pick one part (Aj) from each cycle
can constitute t blocks, which is shown below:

Sj(n,m) = Aj(1,m), Aj(2,m), ..., Aj(n,m), j ∈ [1, t] (2)

The values of Sj are continuous from (k − 1) ∗ n ∗m to
k ∗ n ∗ m − 1, and k(0 < k ≤ t) means that the sub-array
Sj(1 ≤ j ≤ t) is the k-th accessing sub-array of the target
partition sub-arrays.

To give a more comprehensible explanation, three example
cases are shown in Fig. 6. The access analysis and correspond-
ing partitioning choice are also presented (The access order
has been marked on the square). In addition, their formula
values are displayed in the TABLE I.
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Fig. 5 The overall flow of the proposed method.

Fig. 6 Three example cases to show the key strategy.

TABLE I Formula values of the cases
Case C B Aj Sj

Case-1 (1, 2, 4) (1, 2, 4) (1, 4) (1, 4)
Case-2 (4, 2, 1) (i, 2, 1) (i, 1) (4, 1)
Case-3 (2, 3, 2) (i, 3, 2) (i, 2) (2, 2)

Let’s take Case-3 as an example. Its value in the mode C
is C(2, 3, 2). The corresponding array is 2 cycles. Each cycle
could be partitioned into 3 serial blocks, and each serial block
has 2 blocks. Corresponding to the formula, in cycle i(0 <
i ≤ 2), B(i, 3, 2) is composed of A1(i, 2) and A2(i, 2). Pick
one part(Aj(i, 2), 0 < j ≤ 2) from each cycle can constitute
a serial block Sj(2, 2).

The existing array partition pragma can only be performed
in block or cyclic modes as shown in Fig. 4. It can only handle
the situations when n = 1. To achieve the array partitioning
for the streaming dataflow, it is necessary to implement the
proposed array partitioning method described above.

C. Deadlock and Others

Deadlock is a common error that occurs when using the
streaming dataflow. It is usually caused by attempting to
read from an empty buffer or write to a full buffer. To
avoid dataflow deadlock, it is necessary to ensure that the
minimum FIFO size is larger than the data size of a single
reading/writing operation. If the deadlock still occurs when

the FIFO size is big enough, it is necessary to check whether
the code logic meets single-read-single-write or not. Within
the feasible range, the FIFO size could be much smaller than
the total array size, which is good for reducing area.

It should be noted that, since the producer process only
writes to the array and the consumer process only reads from
it, there are no data dependencies within the candidate array
channel. Therefore, the access order can be adjusted to ensure
a consistent reading and writing order while complying with
the logic of the process.

IV. EXPERIMENTS

A. Experimental Setup

The experimental environment mainly uses Xilinx Vitis
HLS (version 21.2) on a Linux platform with 48 Intel(R)
Xeon(R) Silver 4214R CPU @ 2.40GHz, and a single-
layer CNN model [18] is used as the benchmark case. The
experiment results are obtained via synthesis and routing with
Xilinx Vivado 21.2. The target clock cycle is set as 10ns.

B. Case Study: CNN Acceleration

To demonstrate the effectiveness of the proposed method,
CNN is selected for the case study. The convolutional layer
and pooling layer are two consecutive parts of CNN. There
is an array used to transfer data between them. The convo-
lutional layer only writes on it, while the pooling layer only
reads from it. The streaming dataflow can be performed if
the accessing order is consistent and continuous. To achieve
consistency, the writing order could be modified to be the
same as the reading. However, since the pooling layer needs
to run on the sub-matrix blocks, the accessing does not meet
the continuity requirements. Then, in the next section, our
proposed method will be demoed to guarantee serial access.

C. Analysis & Results

The accessing analysis is as follows. As shown in Fig. 7,
the pooling operation selects a 2*2 sized submatrix block at a
time in the entire two-dimensional array. Due to the non-serial
access of the matrix, it cannot meet the condition of streaming
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Fig. 7 The illustration of the CNN case study: (a) is the row-major access between blocks, and (b) is the column-major access.

TABLE II QoR of Streaming and Ping-pong Dataflow
Dataflow Power (W) Clock Cycle Timing (ns) Latency (ns)

Ping-pong 0.290 53293 9.169 488148
Streaming 0.311 32582 10.702 348692

dataflow automatically. While the current array access in each
continuous 2 rows conforms to Equation (1), we can partition
the matrix in every 2-columns-2-rows. In this way, the access
is continuous in each block. Then the streaming dataflow can
be used.

According to Equation (1), as shown in Fig. 7 (a), if
we flatten the array to one-dimensional matrix in row-major
order, the first two elements corresponding to A1(1, 2), the
first row in original two-dimensional matrix corresponding
to B(1, 3, 2), the first two rows in original two-dimensional
matrix corresponding to C(1, c/2, 2), and the new one-
dimensional matrix corresponding to r/2 C(1, c/2, 2), thus it
can be partitioned in r/2∗c/2 blocks which is accessed in the
serial order. At the same time, if we change the access order
to Fig. 7 (b), the accessing mode of the new one-dimensional
matrix could match C(r, c/2, 2), which is means that it can
be partitioned in c/2 blocks.

After converting the one-dimensional matrix to the original
matrix, we can achieve the partitioning in Fig. 7 (b) through
array partition pragma with parameter “block” according to
Fig. 4. The simulation results of the CNN case are shown in
TABLE II. Due to the impact of the memory bank switch and
the increasing number of FIFOs caused by array partitioning,
the power of the streaming dataflow is 7.2% higher than
the power of the ping-pong dataflow. At the same time, the
latency (i.e., clock cycle * timing) of streaming dataflow is
28.6% less than the latency of ping-pong dataflow.

V. CONCLUSION

This paper proposes an efficient array partitioning method
to ease the constraints of the streaming dataflow. With this
method, the HLS tool can infer the streaming dataflow
structure automatically. It is good news because the streaming
channel can bring better performance than the default ping-
pong structure. The experimental case study on CNN indi-
cates that the proposed method could achieve about 28.6%
performance improvements, with the cost of 7.2% power
increasement. In the future, how to analyze and adjust the
inconsistent access to fit the dataflow requirement is our
focus.
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