
Designing and Accelerating Spiking Neural
Network based on High-level Synthesis

Heng Zi Kang Zhao Wei Zhang
Beijing University Beijing University The Hong Kong University

of Posts and Telecommunications, of Posts and Telecommunications, of Science and Technology,
Beijing 10013, China Beijing 10013, China Hong Kong 810000, China

Email: ziheng@bupt.edu.cn Email: zhaokang@bupt.edu.cn Email: eeweiz@ust.hk

Abstract —The purpose of this paper is to use an advanced
spiking neural network algorithm, and accelerate the algorithm
with a variety of acceleration methods based on the high-level
synthesis platform. Its target is to solve the problem of
insufficient performance of the traditional computing platform in
real-time electrocardiogram data processing. The experiment
shows that the performance is improved significantly, which
proves that the proposed method is effective in real-time data
processing.
Keywords—spiking neural network, electrocardiogram data,

acceleration, high-level synthesis
Ⅰ. INTRODUCTION

Spiking Neural Networks (SNN) represents the neural
network models inspired by the biological nervous systems.
And the central premise of SNN is that neurons communicate
with other neurons via voltage action potentials (so-called
spikes). The information between neurons is encoded using
the time between spikes (frequency) and their amplitudes
(weights) [2]. This spike-driven (or event-driven) nature of
SNN allows them to consume less energy than other similar
networks because communication and synchronization occur
only when neurons are spiking. The application of this neural
network will play an important role in the processing of large
amounts of data. This is especially true in situations where
high energy efficiency and performance are required, as they
can reduce unnecessary calculations and communications.
ECG (electrocardiogram) data processing is a tedious and

time-consuming project. The application of SNN to ECG data
processing can improve the real-time and accuracy of heart
disease monitoring. However, with the recent increase in
power consumption, traditional computing often cannot meet
the requirements of strict real-time performance and high real-
time performance. Our research focuses on the development of
an innovative SNN algorithm and acceleration method
designed to meet the problem of insufficient performance
when processing ECG data [1].

Field programmable gate arrays (FPGA) is an effective
way to accelerate different applications. FPAGs are emerging
as a viable alternative to modern CPUs and GPUs. The main
benefit of FPGA is that its architecture can be used to
applications, such as reducing computational accuracy or
streaming intermediate data, rather than expensive
communication through external memory.
FPGA has traditionally been programmed using complex

low-level hardware descriptive languages (such as VHDL,
Verilog), and today FPGA development is assisted by high-
level synthesis (HLS) tools. HLS tool allows programmers to
describe their applications in a programming language and can
automatically convert the application to hardware.
This work was supported in part by National Key R&D Program of China
(2022YFB2901100).

In this paper, FPGA is applied to this research and HLS
tool is used to simplify the development process of FPGA. A
SNN algorithm based on full connection layer function is
proposed, and then the SNN algorithm is accelerated step by
step on the HLS platform, the performance is improved
successfully.
The rest of the paper is organized as follows. In Section Ⅱ,

the background of the whole process of SNN is described.
Then, Section Ⅲ presents the detailed analysis on SNN
algorithm for a better acceleration. And then the acceleration
method is proposed in Section Ⅳ . Section Ⅴ introduces the
experimental results . Finally, a conclusion is made in Section
VI.

Ⅱ. BACKGROUND

The neurons in SNN mimic biological neurons connect
to other neurons via axons and produce spikes when
fired. The fully connected layer indicates that in a
certain layer of the neural network, there are 32 input
neurons and 32 output neurons. The connections between
them are fully connected, and each connection has a
weight to adjust the connection strength. This layer of
the neuron models combines with the concept of
biological neurons, enables neural networks to learn and
process complex data patterns and features [3].

Fig. 1. The inference process based on SNN.

As shown in Fig1, the SNN_infer function is the key
part of the reasoning process. It receives the weight data,

20
24

 C
on

fe
re

nc
e 

of
 S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y 
fo

r I
nt

eg
ra

te
d 

Ci
rc

ui
ts

 (C
ST

IC
) |

 9
79

-8
-3

50
3-

62
19

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
CS

TI
C6

18
20

.2
02

4.
10

53
19

20

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 08:44:06 UTC from IEEE Xplore.  Restrictions apply. 



the ECG data, and initializes values (membrane potential
(mem[i]), spike[i], etc.). It includes the output of the last
fully connected layer, and contains three important
algorithms. The ECG data is transferred from the main
function to the neural network for processing, and
combined with the weight data for processing. This is the
starting point of the whole process. The input ECG data
is then fed into the important full connection layer,
which in turn passes through four full connection layer
functions: fc1, fc2, fc3and fc4. Each function performs
different computational steps to pass the feature data to
the next layer. Each fully connected layer includes the
updating of the membrane potential, the judgment of
pulse state and the application of weights, and updates
the membrane potential of neurons according to the
connected weights. And the activation function is used in
this case to simulate the activation of neurons.
Then the spike counting is performed on the output

results of the fully connected layer. During the reasoning
process, neurons will generate pulses. By counting the
number of pulses per output neuron, it is possible to
understand the activity of the network. And then
according to the statistical results of the number of
pulses, the inference result is determined. The output
neuron with the highest number of pulses corresponds to
the final classification result. The final inference result
is represented as an integer, representing the
classification result of the input ECG data. It can be used
to determine a particular feature or disease state in the
ECG data.

Ⅲ. SNN Analysis

A. Activation Function Analysis
In Fig.2, the code starts with the definition of the activation

function used in SNN. This function act_fun calculates
whether a neuron should generate a spike based on a specified
threshold in this case. If the neuron's membrane potential
exceeds this threshold, it produces a spike. Otherwise, it
remains inactive.

Fig. 2. The function act_fun determines the pulse signal generation

B. Array Analysis
Arrays play a very important role in the SNN algorithm, so

analyzing the detailed functions of the following four arrays
is necessary. The array weight[i] is a 2340-element float24_t
array that stores the weight parameters of the neural network.
These parameters are usually pre-trained and imported from
an external file. In order to input into the spike neural
network to inference, the array ecg[260] is used to store 260
data points of ECG (electrocardiogram) data . And the array
mem[i] is used to store the membrane potential of neurons,
which correspond to each of the four fully connected layers.
These arrays are updated at each time step according to
different calculations. And the spike[i] are arrays that store
whether the neuron produces a pulse, which is the output of
the activation function act_fun. They are updated at each time
step based on the membrane potential and activation function.

C. Loop Analysis
1. TimeLoop: In Fig.3, his function enters a time loop that

represents the time processing of the ECG data. It iteratively
calls the fully connected layers (fc1, fc2, fc3 and fc4) to update
neuron states and membrane potentials based on the input data,
the synaptic weight, and the spike history.

TimeLoop:
1. for(int time=0; time<130; time++){
2. fc1(ecg[time], ecg[time+130], mem1, spike1, weight);
3. fc_layer(spike1, mem2, spike2, weight[96], 32, 32); }

Fig. 3. Part of code to call the full connection layer functions in
turn.

2. SumLoop: In Fig.4, count the number of pulses of each
output neuron and find the code part of the neuron with the
most pulses to determine the final classification or result of the
input data.

SumLoop:
1. for(i=0; i<4; i++){
2. #pragma HLS PIPELINE II=2 off rewind
3. spike_sum[i] += spike_out[i]; }

Fig. 4. Count the number of pulses per output neuron.

3. FindMaxLoop: In Fig.5, the role is to find the output
neuron with the largest average number of pulses, and then
store its index in result as the final result of the neural
network's reasoning.

Fig. 5. Find the output neuron with the most pulses and determine it
as the result.

Further analysis: It is obvious that there is a data
dependency between the Timeloop and SumLoop because the
four fully connected layer functions in the TimeLoop depend
on the result of the previous time step, so the SumLoop needs
to wait for these functions to complete before calculating the
pulse sum. In contrast, the FindMaxLoop has no obvious data
dependency issues. Each iteration of the loop, it independently
compares the total number of pulses of the four output neurons
and updates the max and result. This means that it can be
executed in parallel between each iteration of the loop without
being affected by the results of the previous iteration.

Ⅳ. ACCELETRATION

A. Function Inline on act_fun
Function inline can help the compiler do more

compiling optimizations such as data dependency
analysis and alias analysis, reducing the overhead of
function calls.

B. Performance Optimizations
1. We pipelined the processing cycle with the

1. inline uint1_t act_fun(float24_t mem) {
2. return mem > THRESHOLD; }

FindMaxLoop:
1. for(i=0; i<4; i++){
2. cout << spike_sum[i]/130.0 << ' ';
3. if(max<spike_sum[i]){
4. max = spike_sum[i];
5. *result = i; }

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 08:44:06 UTC from IEEE Xplore.  Restrictions apply. 



“#pragma HLS PIPELINE II=2 off rewind” directive
to improve performance. For the SumLoop loop,
PIPELINE indicates that it is pipelined so that iterations
of the loop can be executed in parallel. Here “II=2”
means that an iteration is performed every 2 clock cycles,
which speeds up the execution of the loop. off and
rewind are used to deactivate the rollback feature to
ensure that the pipe does not cause an error.
2. The “#pragma HLS INLINE” directive in

Timeloop is used to tell the compiler to expand function
calls inline as much as possible at compile time to
reduce the overhead of function calls. In this code, it is
applied to call the function fc1 and function fc_layer to
optimize the use of hardware resources.
3. We applied the “#pragma HLS UNROLL” directive

to reset the spike_sum, telling the compiler to expand the
loop when generating the hardware, that is, to expand
the statements in the loop into multiple copies for parallel
execution. In this case, the loop is expanded into four
separate reset operations, each responsible for the reset of
one spike_sum array element.

C. Combining fc2, fc3, fc4 into fc_layer
Researchers merged the three fc_functions and

replace the call of the original function in the SNN_infer
function. Since the fc2, fc3 and fc4 have the same code
structure, in Fig. 6, we combined these three functions
into a single fc_layer function to reduce redundancy and
increase flexibility.The new fc_layer function takes the
parameters in_size and out_size to determine the size of
the input and output, making it adaptable to different
layers. This increases the versatility of the code and
makes it easy to deal with network structures of
different sizes without having to write separate
functions for each layer.

1. void fc_layer(uint1_t spike_in[32], float24_t *mem,
2. uint1_t *spike_out, const float24_t *weight, int
3. in_size, int out_size) {
4. for(int i=0; i<out_size; i++){
5. mem[i] = mem[i] * DECAY * (1-spike_out[i]);
6. for(int j=0; j<in_size; j++){
7. mem[i] += spike_in[j]*weight[j+i*in_size]; }
8. mem[i] += weight[in_size*out_size + i];
9. spike_out[i] = act_fun(mem[i]); }

Fig. 6. The fc_layer function after combining.

D. Resetting the array spike_sum
At the end of the function SNN_infer, one loop is reported

to reset the array of spikes’ sum (spike_sum[i]) in the
preparation for the next call.

1. for(int i = 0; i < 4; i++) {
2. #pragma HLS UNROLL
3. spike_sum[i] = 0; }

Fig. 7. Reset the code for the array spike_sum.

Ⅴ. EXPERIMENT

The experiment is performed on Xilinx Vitis HLS
2023.1 running on the Ubuntu Linux 20.04 LTS
operating system. And Xilinx Vivado 2023.1 is also used
to evaluate the resources after routing. During the
simulation, the clock period is set as 10ns.

TABLE Ⅰ
The performance estimations after each acceleration methods.

Step Latency
(cycles) Interval BRA

M DSP FF LUT

A 311494 311495 24 4 7676 21612

B 307464 307465 24 4 7664 21492

C 307724 307325 18 3 5415 15461

D 307723 307325 18 3 5409 15461

In Table Ⅰ, as we mentioned in Section III, the
performance gets improvement gradually during four
steps. The step-A stands for declaring the act_fun function
with the inline attribute, the step-B uses pragma/directive
for acceleration, the step-C stands for merging three
functions into one function, and D means resetting the array
spike_sum.
The performance/resource estimations have been

shown in Table I. In four acceleration methods from A to D,
not only the initial reduction in latency and interval are
observed, but more importantly, a significant reduction in
resource usage is also presented. Especially on flip-flops (FF)
and lookup tables (LUT), the reductions are significant,
highlighting the efficiency and effectiveness of the proposed
method. The four optimizations have brought higher efficiency
and lower resource consumption to the FPGA design, which
has been proved to be a successful performance improvement.

Ⅵ. CONCLUSION

The SNN model shown in this paper is useful for processing
time series data, such as electrocardiogram, especially when
the real-time classification is required. The results show that
the performance has been significantly improved. We believe
that the development of this technology can also continue to
meet the needs of other applications, providing a potential
optimization strategy for the processing of real-time data.

REFERENCES

[1] S. Kiranyaz, T. Ince and M. Gabbouj, "Real-time patient-
specific ECG classification by 1-D convolutional neural
networks", IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 664-
675, Mar. 2016.

[2] A. Podobas and S. Matsuoka, "Designing and accelerating
spiking neural networks using OpenCL for FPGAs," 2017
International Conference on Field Programmable Technology
(ICFPT), Melbourne, VIC, Australia, 2017, pp. 255-258, doi:
10.1109/FPT.2017.8280154.

[3] Fwb04 (2023, Mar 14). "SNN_HLS" [Online]. GitHub.
Available: https://github.com/fwb04/SNN_HLS.git.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 23,2025 at 08:44:06 UTC from IEEE Xplore.  Restrictions apply. 


