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ABSTRACT
As feature sizes shrink, the on-chip power grid (PG) faces serious
power integrity issues, and static IR drop analysis becomes criti-
cal for PG design and optimization. Many machine learning (ML)
based methods have been proposed to address the inefficiencies of
traditional numerical methods. However, many previous works have
ignored the problems of feature confusion and imbalance IR drop dis-
tribution. In this work, we propose novel feature augmentation and
selection methods to solve the feature confusion problem and use the
label distribution smoothing (LDS) technique to handle unbalanced
labels. Importantly, we design a static IR drop analysis model for
PG using the Attention U-Net architecture (PGAU). Furthermore,
two real-world datasets are used for evaluation. Experiments show
that our model outperforms baselines, with a 2.6% improvement in
the correlation coefficient (CC) and a 22.2% reduction in the mean
absolute error (MAE). Moreover, our model is highly transferable
and performs better against never-before-seen designs.
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1 INTRODUCTION
In the field of integrated circuit (IC) design, the on-chip power grid
(PG) plays a critical role in transferring voltage and current to each
working instance [1, 2]. However, parasitics in the PG introduce
voltage drops (i.e., IR drops) between power pads and cells, poten-
tially affecting the chip performance and functionality. Therefore,
ensuring that the worst-case IR drop values are within specified
limits is essential, which prevents detrimental effects on the chip. As
chip complexity increases, IR drop analysis and optimization become
more challenging. Traditional numerical methods accomplish the
static IR drop analysis in the physical verification stage by solving
large-scale sparse linear systems of equations [2]. However, these
methods are very time-consuming in industrial-scale designs, often
requiring hours or days. Therefore, accelerating analysis and provid-
ing early IR drop estimates open the door to optimizing the design
cycle.

Methods for accelerating IR drop analysis with machine learn-
ing (ML) have emerged in recent years with superior accuracy and
efficiency, compared with traditional equation solving. For exam-
ple, XGBIR [3] constructs a predictor for static IR drop in PG based
on XGBoost [4]. It accurately addresses IR drop variations across
different scenarios by leveraging features extracted from the PG.
However, as an instance-level predictor, it is difficult to model the
local consistency of the IR Drop distribution. PowerNet [5] utilizes
a convolutional neural network (CNN) to predict full-chip IR drop,
employing instance-level power maps as features. Nonetheless, its
assumption of uniform resistance from each instance to the power
pin may not be suitable for real designs with irregular grid densities.
IREDGe [6] introduces a U-Net-based EDGe network that transforms
an input power image into a corresponding output static IR drop
image. Both images represent contour maps over the identical die
area, focusing on static IR drop analysis. MAVIREC [7] employs a 3D
U-Net model for IR drop prediction to capture detailed, fine-grained
on-chip information. While its ML strategy primarily emphasizes
dynamic IR drop problems, it also applies to static IR drop analysis.

Although the aforementioned methods can be applied to static IR
drop prediction, we observe that these methods overlook two key
issues: feature confusion, reflected in the diversity and complexity
of features provided by the original data, and imbalanced label dis-
tribution, which shows large differences in IR drop distribution on
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Figure 1: An example of IR drop distribution in PG, exhibiting
locally consistent and overall imbalanced characteristics.

the PG. Limited by the size of datasets and the number of features,
previous works [3, 5–7] ignored these problems. With the develop-
ment of electronic design automation (EDA) tools, more and more
features describing PG are extracted from netlists. This seems to be
beneficial to learn more about PG quantification, but many of these
features are of low quality and will cause adverse effects on IR drop
analysis. Therefore, to achieve high-quality predictions, we should
not blindly utilize all raw features but rather selectively choose or
even construct more valuable composite features. Another problem
comes from the imbalanced distribution of IR drop labels. Due to
limitations of on-chip power and dark-silicon trends, the number
of hotspots is relatively small and may occur anywhere in the chip
[2], and the IR drop distribution is locally consistent and overall
imbalanced. As shown in Figure 1, the hotspots are concentrated and
few, and there are generally more normal nodes than hotspot nodes.
This may lead to ambiguous hotspot detection and larger errors and
thus is not suitable for training ML models.

To address the above problems, we make targeted improvements
and innovations in this work. To solve the problem of feature confu-
sion, we do a series of works on feature construction and selection.
After obtaining the raw data from PG, we make feature augmen-
tation to get three combined features to represent the information
of combined power and neighboring information and perform fea-
ture importance analysis to eliminate less important and inefficient
features. Importantly, we utilize the attention gate based on the U-
Net architecture for enhancing model expressiveness. The attention
mechanism focuses on the hotspots parts of the IR drop and the re-
lationship between various PGs. Moreover, the IR drop distribution
in the PG dataset is highly imbalanced, showing a skewed distribu-
tion. We use the label distribution smoothing (LDS) technique to
re-weight the loss function for regression on imbalanced IR drop.
Our method has been evaluated in a series of experiments on two
different datasets, and its effectiveness and superiority have been
verified.

The main contributions of our work are as follows:

• This work focuses for the first time on the complex and re-
dundant features of PG and imbalanced IR drop distribution.

• To solve the problem of feature confusion, this work extracts
more effective combined features from the original features,
analyzes the importance, and filters low-quality features.

• This work proposes a customized universal U-Net-based ML
model for accurate static IR drop prediction, using an attention

gate (AG) to capture the special area (e.g., hotspots) of IR drop
in the PGs.

• To solve the problem of imbalanced IR drop distribution, this
work adopts label distribution smoothing (LDS) to re-weight
the loss function and improve the model’s performance.

• Experiments on the CircuitNet and ICCAD2023 datasets show
the superiority of our model, surpassing the baselines with a
2.6% improvement in CC and a 22.2% reduction in MAE, and
better model transferability.

2 PRELIMINARIES
2.1 Power Grid and IR Drop
In very large-scale IC development, the design of PG involves the
analysis and optimization of the on-chip metal network that dis-
tributes power on the chip. As with all engineering, there are trade-
offs involved - the network should have adequate and reliable perfor-
mance, but not usemore resources than needed [1]. Due to aggressive
technology scaling, on-chip power density has been on an increasing
trend over time [2]. In deep submicron technology, feature sizes are
shrinking while power consumption per device is increasing. This
results in high currents in the power and ground metal networks,
which reduces performance and reliability. A robust PG is critical to
ensuring the reliable operation of chip circuits.

The analysis of static IR drop holds significant importance as it
serves as a crucial step in assessing the power integrity of the chip.
Owing to the parasitics (a nonideal element or effect in a circuit) in
the PG, specifically the partial voltage arising from the resistance
of metal wires, voltage drops are induced between the power pads
and the cells in the design as current travels through the PG. Large
IR drops in the design can impact the chip’s performance and even
compromise its functionality in extreme cases. Therefore, it is es-
sential to implement checks to verify whether the IR drop values
at the nodes of the PG connected to the instances (current sources)
are within specified limits. Traditionally, determining the voltage at
each node in PG involves solving a set of linear equations expressed
as 𝐺𝑉 = 𝐽 , where 𝐺 represents the conductance matrix, 𝑉 is the
unknown vector of voltages, and 𝐽 is the vector of currents. Nev-
ertheless, solving this equation system becomes computationally
prohibitive when dealing with millions or more PG nodes, which
gives birth to ML methods, such as those in literature [4–7].

2.2 Image Segmentation and U-Net Architecture
To perform IR drop prediction, we need to analyze the chip layout.
One commonly used ML technique is image segmentation, which
achieves pixel-level prediction by semantically understanding differ-
ent regions or layers in the chip layout. By converting PG to image
and finely partitioning image pixels, we can predict the instance IR
drop values for each pixel.

Recently, CNN [8] has significantly advanced image recognition
and has become instrumental in the evolution of image segmenta-
tion, where the U-Net architecture [9] is one of the most widely
used CNNs with an encoder-decoder structure. The encoder com-
prises convolutional and pooling layers for feature extraction and
compression. It increases the receptive field, performs feature ex-
traction over a larger image area, and enables multi-scale feature
fusion. Conversely, the decoder upsamples the low-resolution fea-
ture mapping from the encoder output to the original resolution
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through upsampling and inverse convolutional layers and produces
segmentation results. The U-shaped architecture promotes the prop-
agation of contextual information, allowing for object segmentation
by leveraging context from a more extensive overlapping region.
Moreover, U-Net incorporates skip connections. The feature map
from the corresponding layer in the contraction path is clipped and
concatenated into the upsampled feature map. It establishes links
between specific encoder layers and corresponding decoder layers,
thereby mitigating information loss and segmentation inaccuracies
throughout the process [10]. In this work, we use the attention mech-
anism to further enhance the modeling ability of U-Net architecture
for PG.

2.3 Problem Formulation
This work converts static IR drop analysis into an ML prediction task,
aiming to solve the problem of feature confusion and distribution
imbalance of IR drop labels in PG, and is ultimately reflected in the
prediction of IR drop value and detailed distribution improvement
in the PG.

In the context of this research, we adopt a perspective by treating
the PG as a 2D spatial image, where in each PG design is translated
into a corresponding data matrix. This conceptualization allows us to
leverage the structural characteristics of the PG in a format akin to a
multi-channel 2D image. To predict IR drops, as for the input features,
we refer to each 𝑤 × ℎ data matrix representing different features
as a feature map. To specifically address the prediction of IR drops
within this spatial representation, we employ feature maps as input
representations. Each feature map, denoted as 𝑃map𝑖 , corresponds to
a𝑤 × ℎ data matrix, essentially serving as a spatial representation
of the inherent properties of the PG. The IR Drop of instances in
the entire PG is also converted to a data matrix and represented
as 𝑦. The target ML model 𝐹 tries to give the closest prediction 𝐹 ∗

on 𝑦 based on all 𝑛 different feature maps
{
𝑃map1 , ..., 𝑃map𝑛

}
. The

concrete abstract formula is as follows:

𝐹 :
{
𝑃map1 ∈ R𝑤×ℎ, ..., 𝑃map𝑛 ∈ R𝑤×ℎ

}
→ R𝑤×ℎ, (1)

where Equation (1) describes the mapping function 𝐹 , which takes
a set of 𝑛 feature maps {𝑃map1 , ..., 𝑃map𝑛 } as input and produces a
predicted output in the form of a𝑤 × ℎ matrix.

𝐹 ∗ = argmin
𝐹

Loss
(
𝐹

({
𝑃map1 ,...,𝑃map𝑛

}}) , 𝑦) , (2)

where Equation (2) further refines the predictive model by intro-
ducing a loss function Loss, and the objective is to minimize this
loss with respect to the parameters of the model 𝐹 . The argument
𝐹 ∗ represents the optimized model that minimizes the loss, thereby
providing the most accurate prediction for the target variable𝑦 based
on the input feature maps.

3 METHODOLOGIES
3.1 Overall
We focus on the static IR drop analysis task of PG, and Figure 2
illustrates our ML framework for IR drop prediction. To solve the
problem of feature confusion and extract more effective PG infor-
mation, we perform feature augmentation by combining important
features filtered by XGBoost, and then construct feature maps. For
more preciously capturing the PG feature information, especially the
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Figure 2: The framework of our method.

hotspots, we apply the attention mechanism for the first time in this
domain based on the U-Net architecture. To handle the imbalanced
IR drop distribution, we apply label distribution smoothing (LDS) on
the loss function when training the PGAU model.

3.2 Feature Construction
3.2.1 Feature Augmentation.

Due to the problem of feature confusion described in Section 1, we
try to extract more convincing features from the raw features, which
are shown in Table 1. It can be clearly seen that the raw features
provided by the PG are diverse and complex.

Table 1: Raw features of PG

Feature Symbol

The cell type to which the instance belongs. 𝐶𝑖𝑛𝑠𝑡

Instance’s equivalent resistance to all power pads. 𝑅𝑣𝑑𝑑

Instance’s equivalent resistance to all ground pads. 𝑅𝑔𝑛𝑑
Instance’s loop resistance, i.e., 𝑅𝑣𝑑𝑑 + 𝑅𝑔𝑛𝑑 𝑅𝑙𝑜𝑜𝑝
Instance’s minimum resistance to nearest power pad. 𝑚𝑅𝑣𝑑𝑑

Instance’s minimum resistance to nearest ground pad. 𝑚𝑅𝑣𝑠𝑠

Instance’s operating frequency. 𝑓 𝑟𝑒𝑞

Instance’s toggle rate per unit cycle. 𝑟𝑡𝑜𝑔

Instance’s leakage power. 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒
Instance’s switching power. 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

Instance’s internal power. 𝑃𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
Instance’s total power. 𝑃𝑎𝑙𝑙
The ideal supply voltage of power net. 𝑃/𝐺 − 𝑣𝑜𝑙𝑡

The power net to which the instance is connected. 𝑃/𝐺 − 𝑑𝑜𝑚𝑎𝑖𝑛

Power pin. 𝑃/𝐺 − 𝑝𝑖𝑛

Since the IR drop is directly affected by power consumption, we
focus on extracting new features related to power. Upon receiving
the raw features, we construct three new composite features to
make feature augmentation: Composite Power, Neighbor Count, and
Neighbor Power. Based on the power type in Table 1, we can generate
more detailed power information. Composite power 𝑃𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 [5]
reflects the overall power dissipated by one instance and is scaled
by the toggle rate of the instance, which is defined by:

𝑃𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =

(
𝑃𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

)
𝑟𝑡𝑜𝑔 + 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 , (3)

where 𝑃𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is internal power, 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 is switching power,
𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is leakage power and 𝑟𝑡𝑜𝑔 is toggle rate of the instance.

Neighbor power 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 , and neighbor count𝐶𝑜𝑢𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 are
inspired by [3], which first put forward the neighbor voltage (i.e.,
𝑉 2𝑁 ). 𝐶𝑜𝑢𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is defined as the number 𝑛 of instances within
a specific radius of the target instance. 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 describes the power
effects of these 𝑛 nearest instances:
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Figure 3: Results of feature analysis and selection.

𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 =
1
𝑛

𝑛∑︁
𝑖

(𝑃𝑎𝑙𝑙 )𝑖 . (4)

According to this method, we get the correlation information
between the instances, which is important for IR drop analysis. The
extraction of neighbor information conforms to the locality prin-
ciple of static IR drop, which has also been confirmed by relevant
literature.

3.2.2 Feature Selection.
For each PG, we refrain from considering the full range of po-

tential features that might appear relevant, as this would result in
an overly complex and over-fitted model. Our approach involves
feature selection, utilizing XGBoost [4] to assess and rank the sig-
nificance and process time of all features. The result is presented in
Figure 3, where features with blue fonts are selected. Although the
two features𝐶𝑜𝑢𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 and 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 are more time-consuming,
we chose these two features to obtain better prediction accuracy.

3.2.3 Constructing 2D Spatial Feature Maps.
We treat PG as a multi-channel image and then we construct

feature maps. Creating 2D spatial features involves a process of
spatial location of per-instance features. Based on the row height
from Library Exchange Format (LEF),𝑤 and 𝑙 , a design of size𝑊𝑐×𝐿𝑐
translates to an image of𝑊 (=𝑊𝑐//𝑤) ×𝐿 (= 𝐿𝑐//𝑙) pixels. In other
words, the coordinates of each node 𝑥𝑛 and 𝑦𝑛 will be translated to
𝑥 = 𝑥𝑛//𝑤 and 𝑦 = 𝑦𝑛//𝑙 . We choose a feature map size of 256× 256
for fine-grained modeling. In this way, every node is planted into
the 256 × 256 grid. If there are two nodes whose coordinates are
particularly close, they are placed in the same grid position. Paddings
around the layout (if existed) need to be subtracted.

3.3 Encoder-Decoder Architecture with
Attention Mechanism

Referring to the equation Equation (1) in Section 2.3, we designed the
model 𝐹 specifically. To improve the ability to focus on hotspots, we
apply the attentionmechanism for the first time to IR drop prediction.
We achieve this by using the attention gate (AG), which is a unit
that trims features that are less relevant to the current task. The AG
is used to focus on IR drop features in regions of higher variability,
especially IR drop hotspots.

AG

AG

AG

AG

2D Conv+ReLU 2D Max Pool 2D UpsampleConcatenate 2D Conv AG Attention Gate

g

lx 1x̂

Figure 4: Architecture of our PGAU model.

Figure 4 illustrates the architecture of our PGAU model, a cus-
tomized universal static IR drop analysis model, with corresponding
layer details provided in the legend. The model consists of two sub-
networks: (i) an encoder responsible for downsampling, and (ii) a
decoder responsible for upsampling, interconnected by skip links.
This architecture is rooted in a standard fully convolutional U-Net
model, ensuring efficiency and independence of the input image size
[6]. It demonstrates the ability to capture both local and global spatial
neighborhood features. The 2D Convolutional layer and Rectified
Linear Unit (ReLU) are employed to extract features from the input
image. A 2D max-pooling layer is utilized to decrease the size of the
feature map and reduce the number of parameters. Concatenation is
employed to link two feature maps along the channel dimension. Ad-
ditionally, a 2D upsample layer is used to enlarge the low-resolution
feature maps from the encoder to match the dimensions of the origi-
nal input image.

3.3.1 Encoder.
The encoder utilizes a series of 2D convolutional and max-pooling

layer pairs to extract key features from a high-dimensional input
feature set. Considering that the IR drop prediction usually contains
complex spatial relationships and subtle features, the eigenvalues
of each instance are discrete and unevenly distributed. To adapt
more flexibly to IR drop changes in different regions and improve
the sensitivity to nonlinear features, PGAU uses a 3 × 3 × 3 filtered
2D convolutional layer combined with maxpool twice. With more
parameters, downsampling helps to understand trends in the input
image more clearly.

3.3.2 Decoder.
The decoder is responsible for retrieving the location information

of the features lost during downsampling. This is very important for
the IR drop prediction because the location and value of the special
region such as the hotspots are decisive for the IR drop prediction.
To focus on specific objects while ignoring unnecessary areas, we
make use of the attention gate (AG) in this process. Each layer in the
upsampling path includes an AG that filters the corresponding down-
sampled features before concatenating them with the upsampled
features, as shown in Figure 4.

The AG is set on the skip connection for each layer in the decoder
of PGAU. The features from the corresponding encoder layers (i.e.,
𝑥𝑙 ∈ R𝐹𝑙 , where 𝐹𝑙 corresponds to the number of feature-maps in
layer 𝑙) and the result of the former decoder layer (a gating vector
𝑔 ∈ R𝐹𝑔 used for determining focus regions) are the input of the
AG. The output of AG(𝑥𝑙 ) is concatenated with 𝑔𝑖 before the next
upsampling. AG is characterised by a set of parameters Θatt contain-
ing: linear transformations𝑊𝑥 ,𝑊𝑔 ,𝜓 and bias terms 𝑏𝜓 , 𝑏𝑔 . Because
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Figure 5: Illustration of the additive attention gate (AG).

soft-attention is differentiable, the weight𝑊𝑥 and𝑊𝑔 can be learned
through the model network, like other parameters.

Figure 5 gives the structure of AG and can be formalized as:

𝑞𝑙𝑎𝑡𝑡 = 𝜓𝑇
(
𝜎1

(
𝑊𝑇

𝑥 𝑥𝑙 +𝑊𝑇
𝑔 𝑔 + 𝑏𝑔

))
+ 𝑏𝜓 , (5)

where 𝑔 and 𝑥𝑙 are transformed by𝑊𝑔 and𝑊𝑥 to gain prior knowl-
edge, 𝜎1 () is the ReLU activation function, and 𝑞𝑙𝑎𝑡𝑡 is the attention
weight used to calculate the attention coefficient. Acquiring prior
knowledge in this manner enables the model to utilize the interest
and attention gained during training, thereby improving the general-
ization. Subsequently, the results of the previous two operations are
summed. Such an operation can enforce the same region of interest
(ROI), that is, the hotspots in the IR drop distribution. Meanwhile,
the respective different regions are also saved in the output as an
aid. 𝜎1 is used to obtain attention weights to enhance the ROI. Then,
we can get the attention coefficient 𝛼𝑙 , which is defined as:

𝛼𝑙 = 𝜎2
(
𝑞𝑙att

(
𝑥𝑙 , 𝑔;Θatt

))
(6)

where𝜎2 () represents the sigmoid function, i.e.,𝜎2 (𝑥𝑐 ) = 1
1+exp(−𝑥𝑐 ) .

The role of 𝜎2 is to enable the model to dynamically adjust the at-
tention to input features, which is used to improve the sensitivity to
IR drop anomalies or hotspots. Finally, the attention coefficients 𝛼𝑙

multiplied by 𝑥𝑙 result in 𝑥𝑙 , a feature map containing prior IR drop
information and ROI attention, represented as:

𝑥𝑙 = 𝛼𝑙𝑥𝑙 . (7)

Borrowing from the work in [7], PGAU leverages a regression-
like layer at the end of the decoder path, for IR drop prediction at
2D-spatial map level. A trained PGAU model is reusable, without
retraining when facing new designs.

3.4 Loss Function with Label Distribution
Smoothing

We perform a statistical analysis of the IR drop for a large number
of PGs, and the distribution is shown in Figure 6. For a single PG, IR
drops exhibit a skewed distribution with a long tail. For an amount
of PG, most IR drops are concentrated in the lower part and a small
number of hotspots are in regions with larger values. Overall, an
unbalanced IR Drop distribution is shown.

We solve this problem using the label distribution smoothing
method, which is based on the concept of re-weighting, particularly
in addressing imbalanced classification problems [11]. For contin-
uous regression labels, an empirical label distribution may not ac-
curately represent a true label distribution because adjacent labels
may not have clear boundaries. In situations with limited samples
for specific labels, the model tends to prioritize learning features of
labels with similar values [12]. Referring to the method in [12, 13],
we calculate the empirical density distribution of labels in the train-
ing set. Then, we convolve it with a symmetric Gaussian kernel
function to derive the smoothed effective label density distribution.

(a) Single PG (b) Multiple PGs

Figure 6: The imbalanced distribution of IR drop.

The reciprocal of the square root of this smoothed distribution serves
as the weight for re-adjusting the loss function. The LDS calculation
is:

𝑝
(
𝑦′
)
=

∫
𝑦

𝑘
(
𝑦,𝑦′

)
𝑝 (𝑦)𝑑𝑦, (8)

where𝑦′ is the value of the label,𝑦 represents the predicted value, and
𝑝 (𝑦) denotes the empirical density function of the label.We discretize
the labels with a precision of 0.0001 and count the frequency of
the value 𝑦 to obtain 𝑝 (𝑦). 𝑝 (𝑦′) represents the effective density
function of 𝑦′, and the weight corresponding to a label with value 𝑦′
is 1√

�̃� (𝑦′ )
· 𝑘 (𝑦,𝑦′), where the symmetric Gaussian kernel function

is defined as 𝑘 (𝑦,𝑦′) ∝ 𝑒
(𝑦−𝑦′ )2

2𝜎2 . Considering the use of L1 loss, the
re-weighted loss function is given by:

loss
(
𝑦,𝑦′

)
=

𝑛∑︁
𝑖=1

1√︂
𝑝

(
𝑦′
𝑖

) ��(𝑦𝑖 − 𝑦′𝑖
)
|. (9)

4 EVALUATION
4.1 Experimental Settings
4.1.1 Baselines.

Published IR Drop Prediction Baselines. Our method is com-
pared with ML-based IR drop models published in recent years,
including XGBIR [3], PowerNet [5], IREDGe[6], and MAVIREC [7].

Competitive Image Segmentation Models. Our method is also
compared with competitive models in the field of image semantic
segmentation. U-Net [9] is a CNN model with an encoding-decoding
structure, and its unique U-shape architecture can effectively cap-
ture multi-scale feature information. U-Net++ [14] further optimizes
the performance of U-Net by introducing dense connections and
multi-resolution paths. SETR [15] adopts a spatial-channel atten-
tion mechanism, which can effectively capture the global contextual
information in the image. MobileNetV3 [16] is a lightweight CNN
with an efficient model structure and low computational resource
requirements. LR-ASPP [16] is a spatial pyramid pooling method
used to efficiently process information at different scales in images.

4.1.2 Datasets.
Two datasets, CircuitNet [17] and ICCAD20231, are used for ex-

perimental evaluation. They are both datasets specialized for the
static IR drop prediction task. The CircuitNet dataset is derived from
real design, which is larger in scale and richer in information. There-
fore, we pay more attention to the performance of the model on this
dataset. To evaluate the performance of our model more broadly, we
1https://iccad-contest.org/
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(a) Golden (b) MAVIREC (c) PGAU (ours)

Figure 7: Visualization of IR Drop distribution of a PG.

also test it on the ICCAD2023 dataset. The CircuitNet dataset pro-
vides a new version for the Integrated Circuit EDA Elite Challenge2,
consisting of thousands of PGs generated from five industrial front-
end designs at sub-10nm technology nodes, using different logic
synthesis and physical design settings. It provides more complex
information, including effective resistance data, power consumption
data and other features, as well as static IR drop labels generated
by GloryBolt3 (a commercial line-core EMIR analysis tool). The spe-
cific information is shown in Table 2. The IR drop distributions
derived from the five types of industrial designs are relatively dif-
ferent, which places higher requirements on the generalization of
the model. The ICCAD2023 dataset has 120 PG designs, including
100 fake designs and 20 real designs. The competition organizers
use generative adversarial models [18] to generate fake yet close
to realistic PGs. The dataset provides image-based data where each
pixel in the image represents the current, effective distance, PDN
density matrix, and IR drop of a PDN node in the lowermost metal
layer in a 1𝜇𝑚 × 1𝜇𝑚 region on the chip.

Table 2: Statistics of CircuitNet dataset

Front-end Design RISCY-FPU zero-riscy RISCY nvdla-small Vortex-small

# PGs per design 2400 2400 2400 56 66
# Nodes per PG >30000 >50000 >60000 >600000 >600000
Mean of IR drop 0.0028 0.0029 0.0034 0.0074 0.0076

Variance of IR drop 0.0003 0.0003 0.0004 0.0006 0.0006

4.1.3 Parameters and Metrics.
Our model is implemented within a PyTorch 2.0 framework on a

32-core CPU machine with 256GB RAM and one NVIDIA GTX3090
with 24GB RAM. All the baseline models are set at the same number
of layers. Other hyperparameters, such as the optimizer or learning
rate of the baseline, are carefully tuned for optimal performance.

As ameasure of IR drop prediction accuracy, we usemean absolute
error (MAE) and Pearson correlation coefficient (CC) to compare the
model’s predictions with the ground truth. Since designers are more
concerned about the maximum IR drop region of PG, its modeling
error is extremely critical. Therefore, we also give the error where
the IR drop is maximum, called MIRDE. Moreover, runtime is used
to compare the efficiency of the models.

2https://eda.icisc.cn/
3https://www.phlexing.com/pro_services_desc.html?id=20

Table 3: Main results on CircuitNet and ICCAD2023 datasets

Method CircuitNet dataset ICCAD2023 dataset
MAE CC MIRDE Runtime MAE CC MIRDE Runtime

U-Net [9] 0.0075 0.8704 0.0271 97s 0.3105 0.8413 0.8866 66s
U-Net++ [14] 0.0074 0.8736 0.0271 101s 0.3304 0.853 0.8195 71s
SETR [15] 0.0275 0.7239 0.0829 120s 1.1526 0.7694 2.2441 87s

MobileNetV3 [16] 0.0266 0.7252 0.0734 117s 1.0786 0.7712 2.3087 87s
LR-ASPP [16] 0.0258 0.7287 0.0717 117s 1.0025 0.7626 2.1358 85s

XGBIR [3] 0.0016 0.7816 0.0296 4s 0.6735 0.7841 1.2554 3s
PowerNet [5] 0.0087 0.8174 0.0308 140s 0.4214 0.7351 0.9671 79s
IREDGe [6] 0.0035 0.8153 0.0256 128s 0.3907 0.7690 0.8203 70s
MAVIREC [7] 0.0009 0.8854 0.0258 105s 0.3621 0.8651 0.8854 70s

PGAU (ours) 0.0007 0.9085 0.0231 97s 0.2995 0.8692 0.7691 68s

4.2 Main Results
To verify the superiority of our model, we conduct evaluation and
comparison on two datasets respectively. First, the CircuitNet dataset
is divided into training sets, validation sets, and testing sets with
a ratio of 8:1:1, and the static IR drop prediction accuracy of each
model is verified. The results are summarized in Table 3. Our method
beats all baseline models and gains considerable advantages on each
accuracy metric. As for the SOTA model (i.e., MAVIREC), the PGAU
achieves better performance with an average metric improvement
of 22.2% on MAE, 2.6% on CC and 10.5% on MIRDE. Figure 7 visual-
izes the predicted IR drop map given by our model and MAVIREC,
comparing with the golden label. It can be intuitively seen that our
model can provide more detailed predictions for the IR drop map
with less error and trending closer to the label.

Due to the small number of PGs in the ICCAD2023 dataset, to
ensure the reliability of the experiment, we perform 6-fold cross-
validation, and the results are summarized in the right part of Table 3.
The results show that our method achieves better performance, out-
performing the SOTA model MAVIREC, with an average metric
improvement of 17.3% on MAE, 0.5% on CC, and 9.7% on MIRDE.

4.3 Transfer Results
It can be seen from Table 2 that among the five industrial designs in
the CircuitNet dataset, the first three are quite different from the last
two, whether it is the number of PGs and nodes or the distribution
of IR Drop. Therefore, in order to evaluate the transferability and
generalizability of the model, the experiment uses the PGs generated
from the first three designs as the training set and predicts the PGs
generated from the last two designs. From the results in Table 4, our
method is much better in generalization ability with better prediction
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on the corresponding IR drop in the face of very different and never-
seen PGs. This is because our model retains the key information of
the PG data and the corresponding locations, while AGs focus on
the key information and its vicinity. Referring to the AG already
corrected by training, we can predict the trend and value of the IR
drop in transferring work more accurately.

Table 4: Transfer Results on CircuitNet dataset

Method MAE CC MIRDE runtime

UNet [9] 0.0718 0.3525 0.2088 10s
UNet++ [14] 0.0676 0.3726 0.1849 12s
SETR [15] 0.5356 0.1962 0.2775 20s

MobileNetV3 [16] 0.3387 0.1731 0.3845 19s
LR-ASPP [16] 0.4673 0.2003 0.4803 18s

XGBIR [3] 0.0793 0.3277 0.3638 3s
PowerNet [5] 0.1996 0.2905 0.4472 20s
IREDGe [6] 0.0883 0.2914 0.3873 16s
MAVIREC [7] 0.0711 0.3374 0.2058 15s

PGAU (ours) 0.0647 0.3589 0.1689 12s

4.4 Ablation Study
To evaluate the effectiveness of each technique, a series of ablation
experiments are performed, and the results are shown in Table 4.

Table 5: Ablation study results on CircuitNet dataset

Method MAE CC MIRDE Runtime

PGAU (w/o. 𝑃𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ) 0.0008 0.9048 0.0236 95s
PGAU (w/o. 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ) 0.0010 0.8943 0.0244 95s

PGAU (w/o. 𝐶𝑜𝑢𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ) 0.0010 0.8952 0.0239 95s
PGAU (w/o. LDS) 0.0007 0.9085 0.0231 97s
PGAU (w/o. AG) 0.0075 0.8704 0.0271 97s

PGAU (ours) 0.0007 0.9094 0.0223 97s

Selected Feature. First, we verify the effectiveness of our con-
structed features. Specifically, "w/o. feature’s name" in Table 5 de-
notes removing this feature, and the corresponding accuracy shows
a decrease. This experiment also validates the necessaries of our
feature importance analysis in Section 3.2.2.

Label distribution smoothing. The experiment examines the
enhancement achieved through the label distribution smoothing in
addressing imbalanced prediction tasks. The time loss caused by the
LDS operation is negligible compared to the whole preprocessing
and training process. Specifically, "w/o LDS" denotes training on
the label without label distribution smoothing, revealing a marginal
decline (i.e., Avg. CC=0.9% and Avg. MIRDE=3.5%).

Attention mechanism. It can be seen from the results in Table 5
that the model after removing all the AGs, that is, consistent with
the U-Net model, decreases significantly in all measure metrics. This
indicates that AG is very effective for our model.

5 CONCLUSION
In this work, we solve the problem of feature confusion and design
a novel static IR drop prediction solution, verifying its superiority
through extensive experiments. For future improvements, we sug-
gest exploring more valuable composite features or pretraining a
large vision model based on massive open-source datasets to reduce
errors. Lastly, considering the fusion of tabular-based, image-based,

and graph-based ML models could further improve prediction per-
formance.
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