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Abstract—How to reduce the area during multiple logic synthe-
sis algorithms is a key problem. However, it is very hard because
there is very small optimization space left for the logic synthesis.
To settle this issue, this paper integrates the resource sharing
technique into logic synthesis. Resource sharing is a key area-
reduction approach in high-level synthesis (HLS), which is an NP-
hard problem. Until now, most existing algorithms for resource
sharing is greedy approach, which cannot obtain good result
especially for the large circuits with numerous function units
(FU). This paper proposes a novel algorithm based on Monte
Carlo tree search (MCTS) for resource sharing, and uses it to
reduce the resources at the early stage of the logic synthesis. The
experimental results show the better area with short and stable
runtime (0.5 second for MCTS). Comparing to the traditional
greedy approach, the proposed algorithm can reduce the number
of MUXs’ inputs by about 44% and reduce the area up to 20%.

Index Terms—Monte Carlo tree search, Resource Sharing,
Logic Synthesis

I. INTRODUCTION

Logic synthesis plays a central role in the design automation
of VLSI circuits. With the help of logic synthesis tools,
a hardware designer is freed from tedious and error-prone
low-level circuit design, and can focus on architectural and
algorithmic level issues. Logic synthesis generally includes
two stages: technology-independent circuit optimization, fol-
lowed by technology-dependent optimization. In the former,
the circuit is optimized in a manner that is agnostic to the target
technology, whether that be a standard-cell ASIC, FPGA, or
other IC media. During this stage, area is a important metrics.

However, it is very hard to obtain a best solution to achieve
the lowest resource utilization. There are two reasons. First,
there is very small space left for logic synthesis step because
RTL design has been determined by the high-level synthesis
(HLS) stage, which is the upper reaches of logic synthesis.
Second, it is a NP-hard problem to achieve a good trade-off
between latency and area. To settle this issue and obtain a
good area result, this paper considers to utilize the resource
sharing technique in HLS and integrates it with logic synthesis.
Resource sharing problem consists in minimizing the number
of registers and functional units (FU) used in a design. One
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of the main objectives of the problem is to perform sharing
between conditional branches.

In previous works, Wakabayashi and Tanaka proposed a
global scheduling algorithm based on condition vectors to
optimize across the basic blocks and all possible execution
paths [1]. And based on this work, Kim also proposed a
scheduling resource sharing algorithm by analyzing and trans-
forming the data-flow graph (DFG) to share resources between
the conditional branches [2]. Other researchers like Memik
also work on the DFG and proposed a global resource sharing
algorithm [3]. These algorithms could obtain better timing
performance through resource sharing, without considering
the circuit consumption. In addition, Raje proposed another
generalized resource sharing method based on an area-cost
function [5]. Since minimizing the multiplexers inputs is one
of the main goals of resource sharing, Raje also proposed a
technology library to permute inputs to minimize the multi-
plexers inputs. However, this technology is unlikely to find the
optimal solution because minimizing the number of inputs is
an NP-hard problem.

Another and more general method for solving the resource
sharing problem is based on the Greedy Input Permutations
on Commutative Operations Algorithm (For simplicity, we
call it Greedy algorithm) in [5]. It often produces simple and
relatively stable results, but still can fail to find the optimal
solution. In this work, inspired by the recent applications of
AI methods to logic synthesis area, such as in selecting the
architectures of adder and multiplier [6], we propose an AI-
based heuristic algorithm to reduce the area consumption of
circuits and better solve the resource sharing problem.

Generally, resource sharing can be done either on the netlist
or on the source code represented by hardware description
language (HDL) such as VHDL, Verilog and so on. We
chooses to accomplish resource sharing through the latter to
convert the source code to a resource shared form. It means
this algorithm can be easily transplanted to different EDA
tools because it is a source-to-source algorithm. Specifically,
the heuristic algorithm we proposed is based on Monte Carlo
tree search (MCTS), which solve the resource sharing problem
with upper confidence bound (UCB).
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II. PROBLEM FORMULATION

In this section, the resource sharing problem is formulated
through the use of a simple source pseudocode, followed by a
matrix description. Monte Carlo tree search (MCTS) is applied
to the problem using the source-to-source method. A simple
verilog-style pseudocode example is presented in Fig. 1.

Fig. 1. A simple pseudocode example

Codes in a basic block controlled by the same conditional
statement is referred to as a conditional branch. And resource
sharing occurs only between conditional branches whose con-
ditional statement are mutually exclusive. Since these branches
are not accessed at the same time, multiple conditions can
share one or several functional units (FUs). This is known as
timing irrelevant. If several conditional branches are timing
relevant, it means that the FUs in those conditional branches
must work simultaneously in one cycle. With the exception
of special corner cases where a FU can perform various
computation several times in parallel, it is concluded that the
same FUs cannot be shared because a FU can only provide
computational services for one conditional branch at a time.

Examining the pseudocode in Fig. 1, it can be seen that all
three conditional branches are timing irrelevant and require
an addition operation. As a result, these branches can share
one adder instead of each having an independent adder. To
accomplish this conversion process, the input to the adder must
be selected according to different conditional branches.

The codes in Fig. 2 show two different input selection
schemes. The two schemes have the same resource sharing
effect because both schemes use two multiplexers and one
adder. However, as shown in Fig. 3, the area of the circuits
are different because one uses two-input multiplexers while
the other one uses three-input multiplexers. Since the area of
the multiplexer is positively related to the number of its inputs,
the number of the multiplexer inputs largely is positively
correlated with the area. During the experiment, such designs
are compiled by Design Compiler, and the results prove our
statements above.

Fig. 2. Schemes using two-input/three-input multiplexers

The analysis above leads to the conclusion that the mini-
mum number of FUs used is fixed and the area can be min-
imized by reducing the number of MUX inputs. As a result,
the problem shifts from minimizing the area to minimizing

(a) Two-input MUX implementation (b) Three-input MUX implementation

Fig. 3. Circuits using two-input/three-input MUX for the example shown in
Fig. 2

both the number of MUXs and their inputs. Assuming a case
with n conditional branches, m shareable FUs, and p MUXs,
minimizing the circuit area is equivalent to minimizing the sum
of FUs and MUXs area. The area of a MUX can be described
as F (InputsMUX), where F is the MUX area estimation
function positively correlated with the number of its inputs.
This function can be found in many technology libraries, as
mentioned in [7]. In summary, the total area of circuits can be
expressed as the Areatot in (1).

Areatot = m× (AreaFU ) +

p∑
i=0

F (InputMUX) (1)

Since the number of FUs is fixed, the AreaFU in (1) is also
fixed. Therefore, the resource sharing problem is equivalent to
minimizing F (InputMUX).

Let’s review the code in Fig. 1. Suppose a matrix A is built
up. Its columns stand for the inputs (a, b, and c) and its rows
stand for the three conditional branches. Then the element Aij

in the matrix represents how many inputs j does conditional
branch i has. Besides, for inputs with quantities greater than
1, we treat these inputs as distinct for sharing purposes (e.g.
2a+ b+ c = a1 + a2 + b+ c). The matrix A can be described
as in Fig. 4

Then let’s focus on the matrix’s columns, the vector-or and
vector-and operations are introduced for the algorithm descrip-
tion. And the vector-or operations on the matrix’s columns are
actually selecting the inputs of MUXs. For instance, selecting
column a and b in Fig. 4 for vector-or operations means
choosing a and b as two inputs of the MUX. And the result
of the column a vector-or b is a vector with all elements
equal to 1. This means all conditional branches can spare at
least one input, either a or b, for the MUX. As a result, the
implementation of a two-input MUX is possible. This situation
is defined as covered. If the vector-or result does not cover all
branches, it must be added to the matrix as a new column and
repeat the vector-or process until covered.

a b c
conditional branch 1
conditional branch 2
conditional branch 3

 1 1 0
0 1 1
1 0 1


Fig. 4. The matrix form for Fig. 1
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(a) column a vector-and column b (b) column a vector-share column b

Fig. 5. The results of vector-and and vector-share operations for the example
shown in Fig.4

It may also be found that when columns a and b in Fig. 4
are selected for conditional branch 1, both input a and b
can be provided. In this case, one input must be chosen and
the other one kept for future selection. For convenience, the
column further to the left is usually selected, which means to
provide input a and keeps input b in this case. The vector-and
operation is then performed to obtain the remaining input for
each branch. The result of the column a vector-and column b
is shown in Fig. 5(a), and indicates that conditional branch 1
provides input a for the MUX and keeps input B for future
selections.

In this process, two columns are selected from the matrix
and subjected to vector-or and vector-and operations. The
results are only added to the matrix as new columns when
the result of the vector-or operation has elements equal to
zero or the result of the vector-and operation has an element
equal to one. This operation, which includes a vector-or and a
vector-and, is defined as a single vector-share operation (see
example shown in Fig. 5(b)). It is noted that the number of
vector-share operations and the number of MUXs inputs are
proportional, as the Vector-Share process selects inputs for the
MUXs. As a result, the problem of minimizing F (InputMUX)
is equivalent to the Problem 1.

Problem 1: Each row of matrix A has q ones and zeros
otherwise. What is the minimum number of vector-share
operations required to make the matrix A an empty matrix?

III. METHODOLOGY

For greedy algorithm, it selects two columns whose result
after a vector-or operation is most likely to result in the
greatest number of ones and repeats this step until further
sharing is not possible. Although the algorithm finds the
optimal solution at each step, the problem lacks the property of
optimal substructure, meaning that an optimal solution cannot
be constructed from optimal solutions of its subproblems.
This is also why the near-optimal solutions from the greedy
algorithm are always far from optimal. However, heuristic
algorithms like MCTS can overcome the limitations of local
optimal and find better near-optimal solutions.

In this section, we first propose a preliminary algorithm
(Alg. 1) to handle simple cases such as the one in Fig. 1,
and then propose a complete and universal algorithm (Alg. 2)
to solve complex scenarios. Here, we only consider the el-
ementary arithmetic, but the algorithm also applies to other
operations.

A. MCTS Based MUXs Inputs Selection Algorithm

According to the analysis in Section. II, minimizing
F (InputMUX) is equivalent to minimizing Nvec−share. The

process of obtaining codes in Fig. 2 after sharing codes in
Fig. 1 can be abstracted as the Algorithm. 1. This algorithm
can be applied to solve the case where each branch has only
one operation and each branch has the same number of that
operation.

Algorithm 1 MCTS Based MUXs Inputs Selection Algorithm
Input: A matrix Am×n with each row has q ones.
Output: A set of the inputs of each MUX R.

1: R← ϕ
2: while A ̸= ϕ do
3: Select and remove two columns c⃗0 and c⃗1 from A
4: v⃗or ← V ectorOr(c⃗0, c⃗1)
5: ⃗vand ← V ectorAnd(c⃗0, c⃗1)
6: if v⃗or has zero then
7: Add ⃗vor into A as a new column
8: end if
9: if ⃗vand has one then

10: Add ⃗vand into A as a new column
11: end if
12: Add (c⃗0, c⃗1) to R
13: end while

In Algorithm. 1, one of the most important steps is to select
c⃗0 and c⃗1 in line 3. Since the greedy algorithm cannot find
the optimal solution, a heuristic algorithm called Monte Carlo
tree search (MCTS) is applied to do the space exploration.
In a Monte Carlo tree, each node stores a matrix state, and
its children represent the new matrix state after a vector-
share operation in present state. Comparing to the traditional
MCTS with UCB algorithm in [4], we made the following
modifications:

• Expansion Stage: For the matrix of the current node,
select two columns to apply Algorithm. 1 to generate a
new matrix as a child of the current node.

• Simulation Stage: In the simulation, Algorithm. 1 is
randomly applied to two selected columns of the matrix
until it can no longer be shared. This process is repeated
multiple times, and the average number of vector-share
operations used is recorded as the result of the simulation.
The fewer operations used, the more efficient the resource
sharing is and the closer it is to the optimal strategy.

• Backpropagation Stage: Passing the results of the sim-
ulation to the ancestors allows MCTS to find shared
solutions that have more potential to reach the optimal
policy right from the ancestors.

Unlike conventional MCTS, which finds the decision for
the next step, the modified algorithm can directly find the
final sharing solution. It only needs to traverse from the root
of the MCT downward to the leaves to find the relatively
optimal sharing solution. As shown in Figure. 6, the three
child nodes of the root node are simulated to get the number
of vector-shares required for completion of the sharing. After
comparison, it is determined that a minimum of 1 vector-share
is needed and the result is backpropagated to the root node,
updating its minimum number of vector-shares required to 2.
Then the search process is repeated and giving priority to the
child node which need fewer vector-shares for access expan-
sion. But it should be noted that, due to the implementation
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of the UCB algorithm, MCTS reduces its interest in specific
child nodes after repeated visits, and instead visits nodes that
may not appear optimal at the moment, but have the potential
to reach optimality in the future.

Fig. 6. An instance of MCTS

B. Universal MUXs Inputs Selection Algorithm

Last subsection we discussed how to process a simple
case. However, in most cases, each branch has different
kinds of operations and different numbers of operations. This
subsection will introduce the categorization and processing of
various operations, the processing of cascading operations,
and the processing of different numbers of operations to
construct a more realistic and universal problem. We solve the
complex problem by splitting it into several steps by reusing
Algorithm. 1.

• Operations Categories: The operations can be divided
into two categories. We define the operations that can
exchange two inputs as exchangeable operations (such
as addition and multiplication), and those that cannot
be exchanged non-exchangeable operations (such as sub-
traction and division). For exchangeable operations, it’s
easy to apply Algorithm. 1. But for non-exchangeable
operations, such as subtraction, we can only choose
subtrahends or minuends to apply Algorithm. 1.

• Cascade Operations: Some operations like division and
multiplication can form cascade operations. It may form
cases like:

a0 × a1 ÷ a2 . . . an ÷ an+1 (2)

We refer to this form of operations as cascade operations.
To share these operations, a left-to-right recursive scheme
is used. For the cases in (2), part 1 is considered to be
a0 × a1, and part 2 is considered to be a2 . . . an ÷ an+1,
resulting in a division. This idea can be applied to
all other cascade operations from different conditional
branches, and all the part 1 can be shared. After sharing,
the part 1 can be seen as a new register r0, and (2)
becomes:

r0 ÷ a2 . . . an ÷ an+1 (3)

This process is repeated until the cascade operation
becomes either an exchangeable operation or a non-
exchangeable operation.

• Alignment: Sometimes, conditional branches may have
varying amounts and types of operations. In such cases,
only the conditional branches that can be shared are
chosen rather than all of the branches. After several steps,
some branches may no longer be shareable, meaning the
rows they represent become a zero vector. These branches
are then removed, indicating that they cannot be shared
any further. This process is referred to as alignment.

• Replacement: For the case where there are multiple
operations in a single conditional branch, after sharing
one kind of operations, we treat the results of these
operations as new registers to be shared for subsequent
sharing. We refer to such an operation as replacement.
The existence of this operation allows us to further
exploit the shared results of different operations instead
of processing them in a fragmented way.

The parts above help to build more complex and universal
scenarios, and help to design a more generic algorithm. First
we share cascade operations, then we can get a transformed
cases who only consists exchangeable and non-exchangeable
operations. Then we share the rest operations following the
order of DMSA (division, multiplication, subtraction, and
addition) since non-exchangeable operations can only choose
one input to share, which means they’re harder to share. After
that, we can obtain complete MUXs inputs selection solutions.
The optimized algorithm is shown in Algorithm. 2.
Algorithm 2 Universal MUXs Inputs Selection Algorithm
Input: A universal case S
Output: A set of the inputs of each MUX R.

1: R← ϕ
2: P ← [÷,×,−,+]
3: Share cascade operations of S
4: for all t ∈ P do
5: Extract operations t from S
6: Generate matrix A
7: Call Algorithm 1 with alignment and get the result r
8: Add r to R
9: Replace operations t with new registers

10: end for

IV. EXPERIMENTAL RESULTS

We have implemented the proposed MCTS-based algorithm
(Algorithm. 2), the greedy algorithm from [5], and a brute
force search approach with Python. The brute force search
involves enumerating all possible resource sharing solutions
and selecting the optimal one. Although it will certainly find
the optimal solution, the time cost is substantial. Experiments
are conducted to compare them based on Synopsys Design
Compiler (DC), a commercial logic synthesis tool. The open
NangateOpenCellLibrary [8] is selected as the library, and
all test cases are written by Verilog. All the experiments are
conducted on a Ubuntu 16.04 LTS system, and the CPU is
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. We also set
the MCTS searching Time to 0.5 second, which is acceptable
in most scenarios.

Considering the lack of test cases, we opted to automati-
cally generate test cases for conducting the experiment. For
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simplicity, it was assumed that each branch has only one
assignment statement and that all assignments in different
branches are made to the same output. Two sets of test cases of
different sizes were randomly generated. For small-size cases,
the number of conditional branches m ranged from 2 to 7,
the number of input variables n ranged from 3 to 7, and the
number of operations c involved in each branch ranged from
2 to n. In small-size cases, the time consumption of the brute
force search was barely acceptable, so we selected the MCTS,
greedy algorithm, and brute force search for comparison. For
large-size cases, m ranged from 7 to 10 and n ranged from 3
to 12. In such cases, the time consumption of the brute force
search was unacceptable, so we only compared the MCTS and
greedy algorithms. We generated 10 small-size configurations
and 12 large-size configurations, and automatically generated
200 test cases for each configuration as a group. To simplify
the problem and focus solely on the selection of MUX inputs,
our conditional control statements were all statements with the
equal sign such as state == 0, and all inputs were set to 32
bits wide.

After generating the test cases, the original codes were
processed using the MCTS and greedy algorithms to generate
processed codes. These processed codes were then compiled
using DC to obtain area information, with the resource
sharing function of DC being disabled using the command
set hlo resource allocation none. The original and processed
codes were also compared through Multisim simulation for
equality vilidation.

To better visualize the optimization results, we plot the
average area of each group in Fig. 7(a) and 7(b). The greater
the number of rows (m) and columns (n) of a matrix, the
more difficult it is to share resources. On the other hand, the
denser the matrix is (i.e., the greater c), the easier it is to share.
Therefore, to quantify the size of cases, a size parameter α is
also defined as follows.

α = m× n× (n− c) (4)

From Fig.7(a) we see that, the MCTS algorithm yields re-
sults that have an average circuit area almost indistinguishable
from the optimal solution obtained through the brute force
search. Meanwhile, the greedy algorithm has an average of
20% extra area. In Fig.7(b) for the larger size test cases, the
MCTS algorithm continues to perform better than the greedy
algorithm. Detailed result data can be found in Table I.

TABLE I
THE AVERAGE NUMBERS OF MUX INPUTS AND SYNTHESIZED AREAS

OBTAINED WITH THE GREEDY ALGORITHM AND THE PROPOSED MCTS
BASED ALGORITHM, FOR TWO SETS OF TEST CASES.

Cases NMUX Inputs Area
Greedy MCTS Reduction Greedy MCTS Reduction

Small 47.1 33.6 28.7% 634.7 589.3 7.2%
Large 98.7 64.3 34.9% 3751.8 3357.3 10.5%

V. CONCLUSION

In this study, we have demonstrated through theoretical
analysis and experimental results that MCTS, a heuristic

(a) The results of small size test cases

(b) The results of large size test cases

Fig. 7. The experimental results of automatically generated test cases

algorithm, can effectively solve resource sharing problems
and outperforms traditional algorithms such as greedy. In the
future, we plan to further improve the algorithm by incorporat-
ing real-world cases and expanding the experimental settings
(e.g. changing the bit width and the number of branches), and
balance the trade-off between area and timing.
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