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Introduction



IR Drop Analysis
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• The on-chip power grid (PG) transfers voltage and current to each working cell, and 

IR drop analysis involves obtaining the IR drop caused by parasitics between the 

power pads  and cells.

• IR drop analysis becomes very time-consuming in industrial-scale designs using

traditional analysis methods.

Fig.  1  A simple circuit reflecting IR drop.
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• Many numerical methods have been proposed for this process, including direct solvers1,2 ,  

iterative solvers3 , and other specialized solvers4 .

• The system matrix of a n-node PG network can be formulated as a linear system:

G V  =  I (1)

• As the number of nodes in the PG grows exponentially, traditional methods struggle with 

longer solution times or even become infeasible due to high computational demands and     

memory demands.

1T. A. Davis, et al. (2010). “Algorithm 907: KLU, a direct sparse solver for circuit simulation problems,” in Article TOMS, pp.1–17.
2Y. Chen, et al. (2008). “Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate,” in Article 

TOMS, pp.1–14.
3T.-H. Chen, et al. (2001). “Efficient large-scale power grid analysis based on preconditioned Krylov-subspace iterative methods,” 

in Proc. DAC, pp.559–562.
4Z. Liu, et al. (2024). “PowerRChol: Efficient Power Grid Analysis Based on Fast Randomized Cholesky Factorization,” in Proc. 

DAC, pp. 1–6. 
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6

• Traditional numerical methods are highly time-consuming. 

• Current ML-based (mainly CNN-based) methods are fast but lack sufficient 

granularity and can only provide pixel-level predictions, which cannot accurately 

analyze the IR drop on each node. ML-based methods struggle with issues related to

model interpretability and generalizability.
5V. A. Chhabria, et al. (2021). “Thermal and IR drop analysis using convolutional encoder-decoder networks,” in Proc. ASP-DAC, 

pp.690–696.
6V. A. Chhabria, et al. (2021). “MAVIREC: ML-aided vectored IR-drop estimation and classification,” in Proc. DATE, pp.1825–1828.
7F. Guo, et al. (2024). “PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net Architecture and Label Distribution 

Smoothin,” in Proc. GLSVLSI, pp.452–458.
8M. Wang, et al. (2024). “MAUnet: Multiscale attention U-Net for effective IR drop prediction,” in Proc. DAC, pp.1–6.  
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Our Contribution
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• Propose a novel and comprehensive graph-based framework, IRGNN , tailored for 

node-level static IR drop analysis and incorporated numerical solutions and point 

clouds, achieves a unique balance between computational accuracy and efficiency.

• Design IRGraph, an innovative graph effectively encoded the PG topology while 

enriching information at each node.

• Introduce a specialized graph-based network, integrating the designed NDA layer with 

distance-aware weight and the GT layer, to simultaneously capture local and global 

features, thereby improving the performance.



Preliminary



Graph Neural Network
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• Graph neural network (GNN) is specifically designed for tasks on graph-structured 

data by modeling graph structures and aggregating node information.

• Considering the topology of the circuit, many GNN-based approaches9,10 have emerged 

in the field of EDA.

Fig.  2  A Schematic diagram of GNN.

9M. Li, et al. (2021) “Deepgate: Learning Neural Representations of Logic Gates,” in Proc. DAC, pp. 452–458.
10J. Liu, et al. (2024) “PolarGate: Breaking the Functionality Representation Bottleneck of And-Inverter Graph Neural Network,” in Proc.

ICCAD, pp. 1–9.



Point Cloud
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• Point cloud is a data format that represents 3D 

shapes or structures using a large number of spatial 

points, allowing for a better representation of 

complex three-dimensional layouts.

• Zou et al.11 treats circuit layouts as point clouds, 

applying transformer-based techniques to enhance 

feature extraction, yielding strong results in 

congestion prediction and design rule verification.

11J. Zou, et al. (2023) “Circuit as Set of Points,” in Proc. NIPS, pp. 32468--32480. 

Fig.  3  A Schematic diagram of point cloud data.



Problem Formulation
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• The PG is treated as a directed graph, denoted as 𝐺 = (𝑉, 𝐸) , where 𝑉 = 𝑣1, . . . , 𝑣𝑛

represents the set of 𝑛 vertices corresponding to both internal nodes and cells in the PG, 

and 𝐸 ⊂ 𝑉 × 𝑉 represents the set of directed edges corresponding to the current-carrying 

wires.

• Our object is to design an algorithm 𝐹∗ to intake the PG-based graph 𝐺 to give the closest 

node-level IR drop prediction 𝐹, formulated as:



Method



Overall —— Fusion of Solver and ML
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IRGNN consists of several components:

An efficient AMG-PCG solver

Point Cloud Feature Extraction

3

4

IRGraph Construction

IRGNN model

Fig.  4  Illustration of IRGNN framework for static IR drop prediction.
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• In the numerical solution phase

1. A spice parser

2. A circuit generator

3. The algebraic multigrid preconditioned  conjugate

gradient (AMG-PCG) method in PowerRush12

• Using fewer iterations to obtain fast  and rough 

solutions and construct numerical features for ML.

• The  rough  solution effectively provides rough IR drop 

values at each node, thereby greatly benefiting ML in 

understanding and learning PG systems.

12J. Yang, et al. (2013). “PowerRush: An efficient simulator for static power grid analysis”, in Article.

TLVSI, pp. 2103–2116. 

Fig.  5  The illustration of AMG-PCG solver.
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13G. Qian, et al. (2022). “Pointnext: Revisiting Pointnet++ with Improved Training and Scaling Strategies,” 

in Proc. NIPS, pp. 23192–23204.

• The 3D coordinates of the nodes in the PG are determined based on the 

position of the metal layers and the metal rails to which the nodes belong.

• Inspired by PointNet++11, we introduce an offset vector to describe 

the positional relationship between nodes and the direction of current 

flows depending on the nodes’ net.

• For example, the offset between node 𝑣1 = (𝑥1, 𝑦1, 𝑧1) on the GND 

net and 𝑣2 = (𝑥2, 𝑦2, 𝑧2) on the VDD net can be formulated as 

𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1).

𝑥1

𝑥2
𝑦1 𝑦2

𝑧1

𝑧2

Fig.  6 The illustration of 

point cloud representation. 
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An unweighted directed graph G = (V, E) is constructed to model the practical non-

Euclidean topology of the PG network.

A distance-aware edge construction is applied, incorporating edges based on spatial 

proximity (Euclidean distance ||𝑣𝑖 , 𝑣𝑗||2 ≤ 𝛿 for nodes 𝑣𝑖 , 𝑣𝑗 ).

Fig.  7  IRGraph construction with distance-aware edge.



IRGraph
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Node Features

• The current for each node is calculated by the current source and Kirchhoff’s current 
law and voltage law together with the resistance of the wire.

• The effective distance, defined as the reciprocal of the sum of the Euclidean distances to 
all voltage sources, quantifies the node’s proximity to these sources.

• The shortest path resistance computes the total resistance using the shortest path from 
node to power sources

• The net value indicates that the node belongs to the VDD or GND network, represented 
by the binary value 0 or 1.

• The numerical solution (AMG-PCG).

• The point cloud position is the 3D coordinate of nodes.

Edge Features
• The wire resisitance, extracted from spice file.

• The wire offset, 𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)



IRGNN
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Neighbor Distance Attention Layer

We design an NDA layer, as the node attention aggregator in NDA processes the 

neighbor node and edge representations simultaneously with attention weight.

In this way, the information provided by the topology of the PG system and current 

load patterns is unified, enabling a cohesive representation that leverages both spatial 

and geometric insights.

Fig.  8  The architecture of our designed NDA layer.



IRGNN
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Graph Transformer (GT) Layer

We leverage the GT layer14 to capture global 

information across the graph structure, which 

is essential for improving the performance in IR 

drop prediction.

The GT layer allows each node to attend to all 

other nodes in the graph, enabling global 

interactions without the limitation of local 

neighborhoods.

Fig.  9  The architecture of Graph Transformer Layer.

14V. P. Dwivedi, et al. (2021). “A Generalization of Transformer Networks to Graphs,” in Proc. AAAI.
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Baseline

IREDGe5

MAUnet8

Contest Winner（ICCAD 2023）12

5V. A. Chhabria, et al. (2021). “Thermal and IR drop analysis using convolutional encoder-decoder

networks,” in Proc. ASP-DAC, pp. 690–696.
8M. Wang, et al. (2024). “MAUnet: Multiscale attention U-Net for effective IR drop prediction,” in Proc.

DAC, pp. 1–6.
12Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html. 

https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
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Datasets

The ICCAD2023 dataset12, specialized for the static IR drop prediction task, is used 

for evaluation. It contains 120 designs, 20 of which are real designs, and the rest were 

artificially generated based on BeGAN13, named fake designs, close to realistic PGs.)

To increase dataset diversity and assess model generalization, three open-source 

benchmarks13 are utilized: Nangate, ASAP,  and Skywater, comprising 1000, 1000, and 

418 designs, respectively.

12Winners at ICCAD 2023 Contest. [Online]. Available: https://www.iccad-contest.org/2023/Winners.html.               
13V. A. Chhabria, et al. (2021). “BeGAN: Power grid benchmark generation using a process-portable

GAN-based methodology,” in Proc. ICCAD, pp.  1–8.   

https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
https://www.iccad-contest.org/2023/Winners.html
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Metrics

Mean Absolute Error(MAE)

𝑀𝐴𝐸 =
1

𝑁
෍

𝑖=1

𝑁

|𝑦𝑖 − ෝ𝑦𝑖|

F1 score

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Pearson Correlation Coefficient (CC)

𝐶𝐶 =
𝐶𝑜𝑣（𝑦, ො𝑦）

𝜎𝑦𝜎ො𝑦

Maximum IR Drop Error (MIRDE)

𝑀𝐼𝑅𝐷𝐸 = 𝑚𝑎𝑥𝑖|𝑦𝑖 − ෝ𝑦𝑖|



Comparison with ML-based Method
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• Our approach achieves better performance on each dataset with no significant time 

cost increase.

• IRGNN still outperforms all baselines in MIRDE, representing more accuracy in the 

worst-case region.

Table  1  Comparison with ML-based Methods. The Unit of MAE and MIRDE is ×10−4V .



Comparison with ML-based Method
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• Considering the performance potential of 

large-scale datasets, another experiment is 

conducted.

• IRGNN achieves better performance with 

the improvement of 38.67% on MAE, 

8.45% on F1, 1.03% on CC, and 22.29% 

on MIRDE with no significant time cost 

increase.

Table  2  Results of Large-scale Dataset.



Comparison with Numerical Method
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Table  3  Results of Evaluation on every Node in PG.

• IRGNN surpasses PowerRush in 

all metrics, with significantly less 

time cost, indicating great 

performance on nodes of both the 

bottom layer and inner layers.

Fig.  10  Comparison of IRGNN and PowerRush.



Transfer Learning
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• Our method is much better in generalization ability with better prediction on the 

corresponding IR drop in the face of very different and never-seen PGs.

Table  4  Transfer Results on ICCAD2023 Dataset.



Ablation Study
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• The results demonstrate that the numerical 

solution (Num. Solu.) significantly reduces 

MAE and MIRDE, likely due to its precise 

initial point for learning. 

• Additionally, our point cloud features also 

improve performance with better F1. 

• Both the NDA and GT layers also 

contribute to performance gains, especially 

in the CC and F1. Fig.  11  Results of Ablation Study.
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• We propose a novel graph-based framework, IRGNN, combining the numerical solution 

with ML and utilizing the topological information of PG. 

• IRGNN exploits the advantages of both numerical solution and ML methods, and can 

strike a good trade-off between efficiency and accuracy. 

• Experiments demonstrate that our framework can achieve the best performance compared 

to newly proposed methods.

Traditional Solver+ML Traditional Solver / ML>
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