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Abstract— The placement of the input-output buffer (IOBUF)
can impact the performance and power consumption of the
FPGA. The existing global placement (GP) methods lack
consideration for IOBUF, resulting in a decrease in placement
and routing quality. To address this issue, we propose a GP
framework, DrlGoFPGA, which combines IOBUF placement
based on deep reinforcement learning (DRL) with other instances
placement based on gradient optimization (GO). A policy
network structure with multi-action sampling is designed to
accelerate the running speed of DRL, and a parallelizable
reward function is designed to optimize each IOBUF placement
action and avoid sparse reward problems. Then, an IOBUF line-
network relationship (ILNR) graph creation method is designed
to improve the agent’s ability to explore optimal solutions, and
the graph features of ILNR by capturing them through a graph
neural network embedded in the convolutional neural network.
Finally, an IOBUF placement legalization method is designed to
ensure that the IOBUF position meets the FPGA architecture.
The experimental results show that compared with the state-of-
the-art placement tools based on GO, DrlGoFPGA can improve
GP speed by 13.2%-7 x, half-perimeter wirelength by 0.2%-2.6 %,
and wirelength by 0.2%-1.5% and the IOBUF placement model
has good generalization.

Index Terms—FPGA global placement, deep reinforcement
learning, gradient optimization, input-output buffer, legalization.

I. INTRODUCTION

ODERN File Programmable Gate Arrays (FPGAs) have
become an important hardware platform for digital
system design, playing an irreplaceable role in fields such
as the automotive industry and artificial intelligence [1].
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FPGA placement is the mapping of logical circuits onto
the physical resources, with the goal of maximizing FPGA
performance while minimizing power consumption and area.
FPGA placement typically includes GP, legalization (LG), and
detailed placement (DP). The GP has a significant effect on
the performance of the FPGA [2]. However, GP requires most
of the runtime to achieve a good placement result.

Some studies [2], [3], [4], [5], [6] focused on GP accelera-
tion. The open-source placement tools DREAMPlaceFPGA [2]
and OpenPARF [4] both utilize the PyTorch deep-learning
toolkit and GPU to accelerate the GP speed. The elfPlace
[3] also utilizes GPU acceleration technology. Shounak et al.
utilize the OpenCL and FPGA’s ability to support deep
pipelines to achieve GP acceleration [5] and propose a
parallel diffusion algorithm to accelerate optimization speed
and a flow correction algorithm to eliminate possible loops
in discrete processes to achieve GP acceleration [6]. Al-
Hyari et al. [10] use the convolutional encoder-decoder to
predict congestion in FPGA analytical placement iterations
and use congestion information to improve decision-making,
reducing the placer runtime by 27%-40%. These works
greatly shorten placement time while ensuring performance
comparable to traditional methods. While shortening the GP
time is important, improving the performance of the FPGA
placement is more important.

Some studies use deep learning (DL) and reinforcement
learning (RL) to assist traditional methods in achieving better
placement performance. Elgamma [7] and Murray et al. [8] use
directional movement and RL to improve placement solutions
based on simulated annealing. Wang et al. [9] introduce the
convolutional neural network (CNN) into FPGA analytical
placement method, using CNN and adaptive strategies to
construct a density framework to improve placement solution.
The existing FPGA GP methods treat IOBUF as fixed
instances to reduce the placement complexity. However, the
IOBUF placement has a significant effect on improving
placement performance. In addition, the above work using DL
or RL to assist traditional methods requires online learning of
new circuits from scratch to enable the agent to adapt to the
characteristics of the circuit, resulting in expensive learning
time costs.

With the development of artificial intelligence technology,
some studies [11], [13] have started using DRL for end-to-
end placement learning of macro cells on ASICs, significantly
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improving placement speed and quality. For placement models
that perform poorly on some new circuits, fine-tuning the
model can also achieve better placement results than traditional
methods. This method is more advantageous for agents to learn
more general placement rules to improve model generalization
and avoid the expensive learning time cost caused by the need
to learn from scratch for new circuits. Directly learning the
placement model of macro cells through DRL provides a new
approach for optimizing chip placement.

Accordingly, we propose DrlGoFPGA, a FPGA GP
framework based on DRL and GO, aimed at improving
FPGA placement performance through IOBUF placement

optimization. Our key contributions are as follows:
e We propose a GP framework, DrlGoFPGA, which

combines IOBUF placement based on DRL with other
instance placement based on GO for joint learning.

o We design a policy network structure with multi-action
sampling consisting of a graph neural network (GNN)
and a CNN to accelerate the running speed of DRL.

o We design a parallelizable reward function to optimize
each IOBUF placement action in parallel and avoid the
sparse reward problems of DRL.

« We design an ILNR graph creation algorithm based on the
IOBUF netlists to improve the agent’s ability to explore
optimal solutions and embed ILNR knowledge into the
CNN of DRL by capturing it through GNN.

e We design an IOBUF placement legalization (IPL)
method to quickly avoid IOBUF overlap and ensure
that the placement position of IOBUF meets FPGA

architecture constraints in DRL training and testing.
This paper is organized as follows: Section II introduces

the preliminaries. Section III describes the proposed FPGA
GP framework. The experiment results and ablation study are
reported in Section IV. Section V summarizes this work.

II. PRELIMINARIES

This section briefly introduces the heterogeneous FPGA
architecture, two GP methods, and the GNN used in this work.

A. FPGA Architecture

This work adopts the Xilinx UltraScale architecture of
heterogeneous FPGAs, which contains different logic resource
types in each column [16]. In Fig. 1, the input-output
(I/0), physical layer (PHY) blocks, and the configuration
resource (CR) are variably arranged across the FPGA fabric.
CR consists of the configurable logic block (CLB), digital
signal processor (DSP), and random-access memory (RAM).
A CLB consists of 8 basic logic elements (BLEs), with each
BLE consisting of 2 look-up tables (LUTs) and 2 flip-flops
(FFs). PHY contains input BUF (IBUF) and output BUF
(OBUF). IBUF is used to receive signals from external signal
sources. It is usually used to protect the internal circuits from
noise and interference from external signal sources. OBUF
is used to drive the output signals of internal logic circuits
to external devices. It is usually used to ensure the quality
and reliability of the output signal. IOBUFs are placed in a
high-performance input-output bank (HPIOB) or high-range
input-output bank (HRIO), as shown in Fig. 2.

The HPIOB or HRIO is distributed at site coordi-
nates [x € [66,103], y € [0,30,---,450]1x16, BEL
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Fig. 2. HPIOB and HRIO architecture.
z€[0,1,---,25]1x26] in the Xilinx UltraScale architecture.

In the GP results, the three-dimensional coordinates [x, y, z] of
HPIOB or HRIO are usually used to represent the placement
position of IOBUF. However, in the Xilinx UltraScale
architecture, the actual y-index (denoted as y’) of the sites for
the IOBUF is y' = (y+z2) € [0, 1,---, 25,30, -- -, 475]1 x416-
To better improve the performance and reliability of input
and output signals, HPIOB or HRIO usually only allows the
placement of one IBUF or OBUF.

B. Gradient Optimization for FPGA Global Placement

The elfplace [3], as one of the state-of-the-art GO method,
is used for FPGA GP. The elfPlace adopts an electrostatic
system representation for GP and uses a weighted-average
(WA) model W(x, y) [17] and electrical potential energy &,
to approximate the half-perimeter wirelength (HPWL) and
density, respectively. The objective function of elfplace is
shown in (1). DREAMPIlaceFPGA [2] is suitable for elfPlace
on the PyTorch deep-learning toolkit [18], which is developed
from DREAMPIlace [19] used for ASIC GP.

. i Cs 2
I)Icl’l;lf(x7 }’) - W(.X, y) +ZSES)\‘S I:q)s(-xa y) + 2 d)S(x’ y) :I

(D
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where A is the density multiplier. W,, is the x-directed WA
wirelength model. y controls the accuracy and smoothness of
the HPWL approximation. ¢, is used to weight the quadratic
penalty term @, (x, y)z. We(x, y) is the HPWL of net ¢ within
the set of nets E in the design. W(x, y) is the HPWL of FPGA
GP. s € § = {LUT, FF, DSP, RAM}.

C. DRL for ASIC Global Placement

Many studies use DRL to place macro cells on ASIC
and significantly improve GP performance. Google [11]
proposes a DRL method for chip floorplanning, which can
generate chip floorplanning in less than 6 hours. It has
better power consumption, performance, and area metrics
than or comparable to manually made chips. Cheng et al.
[12] propose a joint learning method for ASIC, DeepPlace,
which combines macro cell placement based on RL with
standard cell placement based on DREAMPlace [19], greatly
reducing placement time and wirelength. To overcome the
sparse reward problem, DeepPlace employs random network
distillation (RND) [20], which has been shown to significantly
improve the performance. Lai et al. [13] propose a macro
cell placement method based on RL, MaskPlace, which learns
position, wirelength, and view information based on rich visual
representation to help models take action. This work is better
than existing RL methods in terms of wirelength, congestion,
and density.

Motivated by the above work, this paper uses DRL to
optimize the placement of IOBUF in the FPGA.

D. GNN for DRL

In terms of policy network structure, references [11],
[12] both used GNN to capture node embedding knowledge
of netlists, effectively improving the agent’s ability to
explore optimal solutions. In heterogeneous system design,
the self-optimizing and self-programming computing system
framework [14] uses neural network (NN) to identify features
of instruction dependency graphs and distribute tasks via RL,
improving performance by 4.12x. The graph analytics based
high level synthesis framework [15] constructs dependency
graphs to enhance performance by 14.27x through subgraph
detection and feature extraction. Yao et al. develop the
plasticity on chip framework [21] to optimize chip design by
converting high-level programs into weighted directed acyclic
graphs. Using GNNs for feature extraction in distributed
RL, they achieved a 7.61x performance improvement over
traditional network-on-chip methods. Their programmable
graph representation learning framework [22] creates dynamic
execution graphs, clusters them into software kernels, and
employs GNNs to match each kernel with the optimal hard-
ware device, enhancing optimization speed by 2.02-6.42x.
These advancements highlight the effectiveness of graph
feature extraction and GNNs in improving chip design quality.
Motivated by the above work, this paper also applies GNN to

the policy network structure design of DRL and uses it to
obtain graph features of ILNR.

E. Problem Statement for FPGA Placement

The better placement of IOBUFs can improve the
performance, power consumption, and reliability of the
FPGA circuit. However, FPGA performance bottlenecks
mainly focus on CLB, DSP, and RAM placements with
a large number of instances or pins. Therefore, existing
placement methods prioritize factors that have a greater impact
on FPGA performance, while placement optimization for
IOBUF instances is relatively overlooked. If the existing
placement methods are directly incorporated into IOBUF
instance optimization, the algorithm will need to add more
constraints and variables, which may make algorithm design
and implementation more difficult, and the computation time
will also significantly increase. With the development of
FPGA technology and the increasing demand for applications,
it will become necessary to design an efficient and reliable
IOBUF instance optimization method to improve the overall
performance of the FPGA.

This paper aims to improve the quality of FPGA placement
and routing by optimizing the IOBUF placement. The
optimization objective is to minimize HPWL, i.e. min W (x, y),
while ensuring that the GP time is better or equivalent to the
state-of-the-art GO method.

III. FPGA GLOBAL PLACEMENT FRAMEWORK

In this section, we introduce the FPGA GP flow of
DrlGoFPGA in Part A. Parts B, C, D, and E, respectively,
list the proposed IOBUF placement methods based on DRL.

A. Global Placement Framework of DriGoFPGA

In FPGA, the IOBUF instance is used to transmit signals
between different logic circuits and provide signal-driving
capabilities [23]. The placement of IOBUFs can improve
the performance and power consumption of the FPGA.
However, the state-of-the-art placers based on GO (e.g.,
DREAMPIaceFPGA [2] and OpenPARF [4]) do not consider
the effect of IOBUF placement on the final placement result.
In this work, we propose a GP framework, DrlGoFPGA,
which consists of the IOBUF placement based on DRL and
the CLB, DSP, and RAM (CDR) placement based on GO.
We formulate the IOBUF placement problem as a sequential
Markov decision process (MDP). Our MDP consists of three
key elements:

1) State s;: The state comprises of IOBUF placement can-
vas and the ILNR graph, which provides detailed information
about the connection relationship between IOBUFs. We set the
size of the IOBUF canvas to 2 x 416, and defined the mapping
relationship between canvas coordinates (x, y) and IOBUF
placement coordination in Xilinx UltraScale architecture:
fr : [0,11 — [66,103], fy [0,1,---,415]1x416 —
[0,1,---,25, 30,---,475]1x416. We represent the IOBUF
canvas as a binary image, denoted as /.

2) Action a;: The action space consists of available
positions on the 2 x 416 IOBUF canvas at time . When the
current IOBUF selects a position(x, y), we designate Iy, = 1.
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Fig. 4. The policy network structure with multi-action sampling.

3) Reward r;: The reward is defined as a parallelizable re-
ward function related to HPWL (see Part D of Section III).

The GP flow of DrlGoFPGA is shown in Fig. 3. In the
training phase, our RL agent first sequentially maps IOBUFs
to valid positions on the IOBUF canvas. The IOBUF canvas
serves as the state input for the NN, while the ILNR graph and
IOBUF features serve as inputs for the graph convolutional
network (GCN). The features of NN and GCN are merged
through concatenation, and the actions and values are obtained
through a fully connected layer post-sampling. Actions are
used to update the state and IOBUF features of each time step.
Once all IOBUFs have been placed, we will fix their positions
and map them to the FPGA architecture through mapping
relationships f, and fy. To avoid overlapping, legitimize
the placement position of IOBUFs. Then use the placement

position of IOBUF, the FPGA architecture, and the complete
circuit netlist as inputs for GO to obtain a complete GP
solution. Finally, the FPGA GP evaluation metrics HPWL are
used as the reward for DRL. The Proximal Policy Optimization
(PPO) algorithm [24] is used to update the policy network.
In the testing phase, the IOBUF placement model is directly
used for placement, and then the positions of IOBUF are
mapped and legalized. The GO is used to obtain the GP results
and HPWL.

B. Policy Network Structure With Multi-Action Sampling

The traditional policy network structure of DRL samples
only one action at each time step, resulting in a slow running
speed. To overcome this issue, we have designed a policy
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network structure with multi-action sampling, as shown in @; o @/;D

Fig. 4. The IOBUF canvas information is processed through L [ l\'

the CNN to obtain global information. The CNN consists of o /;‘"

three convolutional layers and one linear layer. The ILNR ) @; Q{D @

graph and IOBUF features are handled by the GNN to obtain
detailed node information. The IOBUF features are composed
of the placement coordinates (x, y) of IOBUF on the
canvas, and the initial IOBUF features are [X, Y., p0rx2 =
0., 0p0rx2(roBuF is the total IOBUF number). The GNN
consists of three GCN [25]. To achieve multi-action sampling
at each time step, we define the size of the IOBUF canvas
as np; x 1 x 2 x 416 (np is the number of parallelization,
which is the number of sampling actions). We fuse the n,; x
(512 — nyrnRr) global information (n;zygr is the dimension
of embedding ILNR knowledge into CNN) and n,; X njrng
detailed node information obtained based on the current
IOBUF index [n,n+1,n+2,--- ,n+ny] via concatenation
and transmit the 7 ; x 512 results to the fully connected layer to
generate the n;,; X 512 probability of actions and 7 ; x 1 values.
Then, the n,; x 1 actions are obtained after sampling, where
the initial value of n is 0. After completing each multi-action
sampling, update n <— n + npy, that is, update the placement
coordinates of n,; IOBUFs at each time step. One episode is
reduced from the original n;o gy r time steps to njopuFr//npi
time steps. Therefore, the policy network structure with multi-
action sampling can accelerate the training and testing speed
of DRL. Each n, IOBUF features are updated according
to (5) and (6).

X[n,n+1,---,n +npl]nplxl <~ ACtionrlp1><1//416 )
Yn,n+1,--- ,n+ lel]np,xl <« Actionnp,x1%416 (6)

where X and Y are the horizontal and vertical coordinates
of the placement of IOBUF. //represents integer division
operation. % represents modulo operation.

PPO is used to update the policy by optimizing the clipped
objective function, as shown in (7).

= £ [min (p, ©) - Ay, clip (p, (0), 1 —e, 1 +¢) A,)] 7

where p; is the probability ratio of the new policy to the old
policy and A;is the estimated advantage at time step ¢.

C. IOBUF Line-Network Relationship Graph Creation

In our policy network structure, the ILNR graph needs to
be created according to its connection relationship. However,
the IOBUF connection relationship is not directly provided
in the FPGA design file. If we manually analyze the
circuit netlist design to find the connection relationship
between IOBUFs, it will inevitably require a very expensive
time cost. Therefore, it is necessary to design a method
for automatically analyzing circuit netlists and creating the
ILNR graph. An ILNR graph is composed of vertices
and edges connecting vertices, denoted as G = (V, E).
For example, if Fig. 5(a) shows the ILNR graph between
four IOBUFs, then the vertex set is V = [vg, vi, V2, v3]
and the edge set is E = [[vo, v1], [v1, v2], [v2, v3]]. This
work introduces PyTorch Geometric (PyG), a geometric deep
learning extension library for PyTorch [26], which creates

(a) IOBUF pin connection  (b) IOBUF netlist connection

Fig. 5. A ILNR schematic graph.

GNN and uses the [Source, Target] method in PyG to
create ILNR graphs. The Source is the set of source nodes,
and the Target is the set of target nodes connected to the
source nodes. In addition, we consider that the connections
between IOBUFs are bidirectional. Therefore, the ILNR graph
in Fig. 5(a) can be represented as [Source, Target] =
[[vo, v1, v2, v1, v3, V2], [V1, Vo, VI, V2, V2, V3]].

If only the direct connection relationship between pins
of IOBUFs is considered, then the GNN can only capture
the connection relationship between IOBUFs and cannot
capture the connection relationship between IOBUFs and
other instances. To enable the GNN to accurately capture the
connection relationship between IOBUFs and other instances,
we define the criterion for determining whether there is
a connection between two IOBUFs as follows: When at
least one of the netlists connected to the pins of the two
IOBUFs is the same, it is considered that the two IOBUFs
are connected. Because a netlist typically consists of many
different instances. Defining the connection relationships
between IOBUFs through IOBUF netlist connections enables
the agent to indirectly capture the connection relationships
between IOBUFs and other instances. Therefore, we design
a new ILNR graph creation algorithm based on the IOBUF
netlist (Algorithm 1).

In Algorithm 1, we use existing placement engines based
on GO (e.g., DREAMPlaceFPGA [2]) to obtain the netlist
mapping set Q¢ of each IOBUF pin and its connection.
Assuming that the netlists connected to each IOBUF pin in
Fig. 5(a) are Q4" = [neto, ner1], Q" = [neto, ner3], Q5" =
[nety, nety], Qg’“’ = [net3, nets]. According to Algorithm 1,
if i # j exists and Q¢ N Q;?e’ #@ wheni =0, j=0to03
(line 4 of the code), it indicates that there is a connection
between the i-th IOBUF and the j-th IOBUF. At this moment,
Source = [0, 1, 0, 2] and Target=[1, 0, 2, 0]. Similarly, when
i = 3, we obtain Source =10,1,0,2,1,0,1,3,2,0,3, 1] and
Target=[1,0,2,0,0, 1, 3, 1, 0, 2, 1, 3], and the corresponding
ILNR graph is shown in Fig. 5(b). It is not difficult to find that
the above [Source, Target] has multiple edges, which represent
stronger relationships to enhance their weights in the process
of graph convolution.

D. Parallelizable Reward Function Design of DRL

We design a policy network structure with multi-action
sampling, which requires corresponding reward values for
multiple actions at each time step. The traditional DRL only
has actual reward in the last time step of completing an
episode, and rewards are usually set to zero in other time
steps, which can lead to sparse reward problems that are
not conducive to agents exploring optimal solutions. The
DeepPlace [12] used for ASIC placement generates a non-zero
internal reward through RND [20] at each time step to prevent
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Algorithm 1 A ILNR Graph Creation Based on the IOBUF
Netlist

Input: The netlist mapping set Q/“/(i = 1,2, ---
of each IOBUF pin and its connection.

Output: Source, Target

1: Source =[], Target=[]

2: fori=0tonjopyr —1 do

“MJOBUF)

3: for j =0tongyr —1 do

4 if i # j and Q7' N Q?"’ # @ then
5: Source = Source U {i, j}

6 Target = Target U {j,i}

sparse reward problems. However, this method is designed to
sample only one action at each time step, and performing RND
will increase the running time. To reward multiple actions
sampled at each time step and avoid sparse reward problems,
we design a parallelizable reward function as shown in (8).

= (D [We (e = 10°) oi = 1.2, nsosur
8)
W, (x,y) = W(x. y) ©)

where r;; is the reward for the i-th IOBUF at time ¢. 7 is the
scaling factor and takes the value 1079 in this work. W, (x, y)
is the HPWL of FPGA GP at time ¢.

According to (8), the larger the GP HPWL value, the smaller
the reward value; otherwise, the reward value will be larger.
This means that the placement actions of each IOBUF are
evaluated by the final GP HPWL. The purpose of designing
a parallelizable reward function in this way is to optimize the
IOBUF placement with the goal of obtaining the optimal GP
solution. Having the shortest HPWL between IOBUFs may
not necessarily mean that the final GP HPWL is optimal.

The total IOBUF number in (8) should be an integer
divisible by the number of parallelization. As shown in (10),
for the total [OBUF number that cannot be integer divided
by the numbers of parallelization, the solution is to increase
virtual IOBUFs. The reward for the placement action of the
virtual IOBUF is zero, and the placement position is fixed to
(x,y) = (0,0). When conducting GP optimization based on
GO, the placement positions of virtual [OBUFs will not be
written into the FPGA architecture.

n1oBUF,Lf n1oBUF %N paraiier =0

(10)
(nroBur//np+1) -np, else

NJOBUF = [

However, only by completing the placement of all IOBUFs
can we obtain the GP HPWL based on GO. This means that
the reward value cannot be immediately obtained according
to (8) at each time step. Therefore, we have designed an
IOBUF placement action parallel optimization flow, as shown
in Fig. 6. In Fig. 6. Firstly, executing the IOBUF placement
based on DRL at each time step to obtain a n,; x 1 action.
Correspondingly, we temporarily set the reward value for each
time step to 0, px1s which is called the old reward. Then, the
CDR placement based on GO will be executed to complete
the placement of all FPGA instances and obtain the HPWL.
We calculate the actual rewards for each IOBUF according
to (8), and the old rewards are replaced by actual rewards.
Finally, the policy network is updated through PPO.
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| ¢ =1,Maximum time step =T I

v
| step = |episode = hgy,, +n‘,),J<—| t=t+1 I
¥

Phase 1: The IOBUF placement based on DRL ]

Store rewards for each step:
Reward[step] +[0,0,--+, 0, .

Get the actual Reward for each ]OBUF:

Reward[ j] [r,,.7;,

Qutput Reward after an episode (the
size of Reward is episodexn, 1)
¥

[ Phase 2: The CDR placement based on GO J Ca]CUlﬁ'E reward 1;, for each IOBUF

I accmdmg to Eq. (8)
Output HPWL W, (x, y) L3

Fig. 6. The IOBUF placement action parallel optimization flow.

In Fig. 6, each IOBUF has an actual reward for evaluating
the quality of the placement action before using PPO to update
the policy network, and the sparse reward problem is avoided.

E. IOBUF Placement Legalization

The proposed policy network structure with multi-action
sampling can improve the running speed of DRL, but it
may lead to overlapping IOBUF placement actions. Therefore,
we propose an IPL method that can quickly avoid overlapping
IOBUF placement positions and make the placement positions
meet FPGA architecture constraints. The IPL method mainly

includes two legalization constraints:
« IOBUFs need to be placed in the IOBUF region boxes of

FPGA architecture, and any two IOBUFs cannot overlap.
« Using three-dimensional coordinates [x, y, z] to represent

the position of IOBUF in GP results.
1) IOBUF Placed in IOBUF Region Boxes and no Overlap

Between IOBUFs: Due to the design of the policy network
structure with multi-action sampling in DRL, agents may
choose the same placement action for different IOBUFs,
resulting in overlap between IOBUFs. To quickly adjust the
IOBUF placement position to avoid overlapping situations
during DRL training and testing, we design a method to
adjust the placement position by calculating the shortest
distance between the mapped IOBUF placement position on
the FPGA architecture and the legal placement positions
of all IOBUFs on the FPGA architecture (Algorithm 2).
Assuming that the placement coordinates of the IOBUF
placement optimization based on DRL are mapped through
the mapping relationship fy and f) to obtain the placement
coordinates By, of IOBUF on the FPGA architecture. The
legal placement coordinates of all IOBUFs on the FPGA
architecture are formed by combining x € [66,103] and
y € [0,1,---,25,30,---,475]1x416 to form all unique
legal placement positions I'g32x2 (line 1 of the code). Then
calculate the sum of squared distances d|r|x1 between the i-
th placement coordinate of IOBUF and all legal placement
positions I' (line 4 of the code), and calculate the index
number idx corresponding to the shortest distance in d|r|xi
(line 5 of the code). If d[idx] = 0, it means that the
placement position in I' is not occupied by other IOBUFs.
Therefore, there is no need to adjust the placement coordinates.
On the contrary, if d[idx] # O indicates that the placement
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position in I" has been occupied. Therefore, we will replace the
current placement position of IOBUF with the legal position
I'[idx, :] corresponding to the shortest distance (line 7 of
the code). Finally, we need to delete the legal positions
already occupied by IOBUFs in I'(line 8 of the code) to
ensure that the placement positions of each IOBUF are
unique and non-overlapping. Algorithm 2 only uses simple
numerical operations, and the IOBUF can be moved only a few
times to avoid overlap. This method is simple, effective, and
runs fast.

2) Using [x, ¥, z] to Represent the Position of IOBUF: After
completing IOBUF placement optimization based on DRL,
we map all placement actions to the FPGA architecture based
on the mapping relationships f, and f,, and ultimately need to
represent the placement position of IOBUF in the form of [x,
v, BEL z]. For all placement action X, x1, the coordinate
Xn;opurx1 that meets the FPGA architecture can be obtained
by inverse mapping based on the mapping relationship f;,
while for ¥y, x1, the coordinate y, ~ . obtained by
inverse mapping based on f) needs to be transformed into
Ynropurx1 and BELz,, .., »x1according to (11) and (12).

Y
(12)

’
Ynropurxt = 110BUF (Y njopurx1//110BUF)
’
BELZ”IOBUFXI =Y ”1()BUF><1%IIOBUF

where I; oy F is the interval between two IOBUFs in the site
y coordinate direction. In the Xilinx UltraScale architecture,

Iiogur = 30.

F. GO for CDR Placement

After completing the IOBUF placement based on DRL,
the proposed DrlGoFPGA needs to use the GO method
to place the remaining CDR instances in the FPGA. The
current GO methods (e.g., elfplace [3]) exhibit higher
computational efficiency and solution performance compared
to traditional heuristic methods (e.g., simulated annealing
algorithm). Therefore, we chose the GO method to complete
the final GP and used the obtained GP metric HPWL to
calculate the reward value. In this work, we obtained the
final GP results using various state-of-the-art placers based
on GO, including DREAMPlaceFPGA [2], OpenPARF [4],
DREAMPIlaceFPGA-MP [30], and OpenPARF 3.0 [31].

Algorithm 2 Avoid Overlap between IOBUFs
Input: The IOBUF site coordinate x and y’, the placement
coordinates By, of IOBUF, the total IOBUF number n;0 v F
Output: All placement coordinates B)lgg; of TIOBUF after
legalization
1. T = {(x, y)|x €
[0,---,25,30,---,475]}832x2
2: B)l(gy < Byy
3:for i =0 to n;opyr — 1 do:
1 lgr. . Lo 2

d\I‘|><1 = Zj=0 (Bxy[l» J1=TL, jD
idx = argmind|r|x1
if d[idx] # O then:

BE[i, ] = T'lidx, ]
IF=T[0:idx —1,:]UTI'[idx +1 : end, :]

[66, 103], y €

A

TABLE I
THE COMPOSITION OF ISPD’2016 BENCHMARKS

Design #LUT/HFFH#RAM/MADSP ~ #I0OBUF  #Net
FPGAO1 50K/55K/0/0 151 105K
FPGAO02 100K/66K/100/100 151 168K
FPGAO03 250K/170K/600/500 401 429K
FPGAO4 250K/172K/600/500 401 430K
FPGAOS5 250K/174K/600/500 401 433K
FPGAO6 350K/352K/1000/600 601 713K
FPGAO7 350K/355K/1000/600 601 716K
FPGAO8 500K/216K/600/500 401 725K
FPGAO09 500K/366K/1000/600 601 877K
FPGAI10 350K/600K/1000/600 601 961K
FPGAL1l 480K/363K/1000/400 601 851K
FPGAI12 500K/602K/600/500 401 1111K

TABLE I

THE COMPOSITION OF ISPD’ 2017 BENCHMARKS

Design #LUT/#FFH#RAM/#DSP  #IOBUF  #Clock  #Net
CLK-FPGAO1 211K/324K/164/75 331 32 536K
CLK-FPGAO02 230K/280K/236/112 335 35 512K
CLK-FPGAO03 410K/481K/850/395 444 57 899K
CLK-FPGA04 309K/372K/467/224 434 44 685K
CLK-FPGAO05 393K/469K/798/150 444 56 866K
CLK-FPGAO6 425K/511K/872/420 444 58 943K
CLK-FPGAO07 254K/309K/313/149 338 38 565K
CLK-FPGAO8 212K/257K/161/75 332 32 471K
CLK-FPGA09 231K/358K/236/112 335 35 592K
CLK-FPGA10 327K/506K/542/255 434 47 838K
CLK-FPGAL1l 300K/468K/454/224 427 44 773K
CLK-FPGAI12 277K/430K/389/187 339 41 710K
CLK-FPGA13 339K/405K/570/262 437 47 750K

IV. EXPERIMENTAL RESULTS

A. Benchmarks and Experimental Setting

We conduct experiments using the ISPD’2016 [27] and
ISPD’2017 [28] benchmarks. TABLE I and TABLE II show
the composition of the benchmarks. All experiments are run
on a Linux server that consists of an Intel (R) Core (TM)
19-10920X CPU @ 3.50 GHz (12 cores) and one NVIDIA
Corporation GP102 [GeForce RTX 3090] GPU. PyTorch [18]
and PPO [24] are used for all experiments. We utilize
GCN [25] as the GNN backbone. For CDR instances, we adopt
GO such as DREAMPlaceFPGA [2] and OpenPARF [4] for
experiments. The IOBUF placement optimization based on
PPO uses the Adam optimizer [29]. Due to the varying
complexity of each circuit placement problem in the bench-
marks, the learning rate setting of the Adam optimizer has a
significant effect on the results. We used the adaptive reduction
learning rate method ReduceLROnPlateau in PyTorch.
TABLE III, TABLE IV, and TABLE VI compares the GP and
routing results of DrlGoFPGA with DREAMPlaceFPGA and
OpenPARF. TABLE V compares the results of DrlGoFPGA
with SA/IOBUF-DREAMPlaceFPGA considering IOBUF
optimization. TABLE IX and TABLE X compares the results
of DrlGoFPGA with DREAMPlaceFPGA-MP and OpenPARF
3.0. In all comparison metrics, ‘WL’ is the wirelength after
routing the placed designs using the router in OpenPARF.
‘HPWL is the half-perimeter wirelength after GP. ‘GPT’ is
GP time.
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TABLE III
EXPERIMENTAL RESULTS OF DREAMPLACEFPGA AND DRLGOFPGA ON ISPD’2016 BENCHMARKS (HPWL AND WL IN 103)

Design DREAMPIlaceFPGA [2] DrlGoFPGAO1-PT DrlGoFPGAO1-FT
WL HPWL GPT (s) WL HPWL GPT (s) WL HPWL GPT (s)

FPGAO1 339.4 190.9 8.7 3355 188.7 7.2 335.5 188.7 7.2
FPGA02 698.8 490.4 22.8 698.0 491.5 19.7 681.3 482.9 17.8
FPGA03 3101.2 2053.4 21.6 3024.4 1997.0 17.2 3017.5 1997.5 17.4
FPGA04 5999.8 4023.7 23.1 5974.6 3976.3 17.6 5991.7 3996.8 17.5
FPGA05 12430.9 8122.8 26.6 12058.1 7920.1 19.9 12083.7 7928.4 19.5
FPGA06 6105.6 3403.3 24.1 5940.5 3349.4 19.0 6022.5 3329.6 19.1
FPGAO07 10344.3 62143 24.1 10286.9 6219.7 19.1 10337.6 6224.6 18.5
FPGA03 9593.3 6735.4 25.0 94943 6606.1 19.6 9433.6 6586.1 19.2
FPGA09 12882.8 8132.6 26.7 12870.9 8182.6 213 12883.7 8187.8 21.0
FPGA10 5945.6 3326.8 25.6 59233 3309.3 19.1 5920.1 3304.0 19.8
FPGAIl 132622 8921.3 255 133214 9029.3 20.6 13217.0 8942.8 20.3
FPGA12 7408.4 4384.6 29.2 7292.2 4350.3 23.7 7185.8 4290.3 21.2

Ratio 1.014 1.012 1.290 1.003 1.004 1.023 1.000 1.000 1.000

DrlGoFPGAO1-PT/FT: During pre-training and fine-tuning model testing, the GO method uses DREAMPlaceFPGA.

TABLE IV
EXPERIMENTAL RESULTS OF DREAMPLACEFPGA AND DRLGOFPGA ON ISPD’2017 BENCHMARKS (HPWL AND WL IN 103)

Design DREAMPlaceFPGA [2] DrlGoFPGAO1-PT DrlGoFPGAO1-FT

WL HPWL GPT (s) WL HPWL GPT (s) WL HPWL GPT (s)
CLK-FPGAOl | 23527 1748.6 19.7 2302.5 1691.2 16.2 2276.9 1678.6 15.1
CLK-FPGA02 | 2593.6 1715.9 19.5 2598.1 17313 15.2 2625.2 1742.8 14.6
CLK-FPGA03 | 64315 4859.1 19.3 6334.9 4548.9 18.5 6334.4 4544.9 16.1
CLK-FPGA04 | 44174 2989.7 19.1 4395.6 2974.7 15.6 4394.8 2972.7 15.1
CLK-FPGAO5 | 5563.0 3940.1 19.5 54194 3739.5 17.0 5397.3 37332 15.9
CLK-FPGA06 | 66974 4671.4 19.7 6435.0 4505.6 17.1 6432.1 4510.0 16.6
CLK-FPGA07 | 27118 1842.5 19.2 2724.8 1843.0 16.6 27233 1843.5 16.0
CLK-FPGA08 | 21462 1585.8 20.9 2146.9 1586.5 183 2119.4 1576.9 18.2
CLK-FPGA09 | 27125 1852.3 19.2 27583 1859.1 16.7 2760.7 1876.5 15.5
CLK-FPGA10 | 5005.1 3437.9 19.3 4850.9 3279.3 17.1 4846.4 32747 15.7
CLK-FPGA1l | 45922 3078.1 18.5 4475.9 2959.1 16.1 4477.8 2960.3 15.7
CLK-FPGA12 | 35939 2330.1 18.8 3601.2 2349.9 16.6 3602.0 2349.9 15.7
CLK-FPGA13 | 46434 3291.7 18.5 44653 3081.4 15.8 4466.1 3081.1 15.5
Ratio 1.015 1.026 1.222 1.001 1.000 1.054 1.000 1.000 1.000

DrlGoFPGAO1-PT/FT: During pre-training and fine-tuning model testing, the GO method uses DREAMPlaceFPGA.
DREAMPIlaceFPGA and DrlGoFPGAO1-PT/FT do not support clock routing constraints on ISPD’2017 benchmarks.

TABLE V
EXPERIMENTAL RESULTS OF SA/IOBUF-DREAMPLACEFPGA AND DRLGOFPGA (HPWL AND WL IN 103, GPT IN SECONDS)

Design SA-DREAMPlaceFPGA IOBUF-DREAMPIlaceFPGA Design SA-DREAMPlaceFPGA | IOBUF-DREAMPlaceFPGA
WL HPWL | GPT WL HPWL | GPT WL HPWL | GPT WL HPWL GPT

FPGAO1 353.2 206.4 7.6 340.6 195.5 29.4 | CLK-FPGAOI | 2304.6 | 17232 | 159 | 2277.6 1681.4 104.0
FPGAO2 707.8 511.5 20.8 696.8 496.9 854 | CLK-FPGAO2 | 2632.7 | 1745.7 | 159 | 2590.7 1716.0 99.0
FPGAO3 | 3047.7 | 2016.0 | 17.2 3055.3 2016.2 | 136.2 | CLK-FPGAO3 | 6275.0 | 4446.0 | 16.3 6265.0 | 44342 125.5
FPGAO4 | 60259 | 4015.6 | 174 5996.5 4001.2 | 131.8 | CLK-FPGAO04 | 4364.3 | 3004.9 | 15.0 | 4470.7 3049.1 120.4
FPGAO5 | 12221.0 | 8011.7 | 20.2 12176.6 | 8005.7 | 151.9 | CLK-FPGAOS5 | 5357.9 | 3696.0 | 16.0 5343.7 3689.9 127.0
FPGAO6 | 59132 | 3325.7 | 18.8 5964.0 3348.0 | 189.9 | CLK-FPGA06 | 6442.2 | 4502.0 | 16.2 | 6396.7 | 4444.8 1243
FPGAO7 | 10259.8 | 6232.6 | 18.2 10303.9 | 61924 | 188.0 | CLK-FPGAO7 | 2727.7 | 1850.1 16.5 2725.7 1852.5 100.5
FPGAO8 | 9459.2 | 6600.6 | 20.8 9518.2 6599.7 | 143.4 | CLK-FPGAO8 | 2157.3 | 1589.1 17.7 | 21809 1730.5 107.8
FPGAO09 | 12810.2 | 8139.1 | 21.2 12753.7 | 8096.2 | 189.9 | CLK-FPGAQ9 | 2745.5 | 1863.6 | 16.0 | 2751.2 1870.0 102.2
FPGA10 | 5939.0 | 3324.2 | 20.2 5858.4 3284.9 | 1934 | CLK-FPGA10 | 4823.0 | 3198.2 | 15.9 | 48174 3167.4 1213
FPGAI11 | 13242.6 | 8977.0 | 19.8 13167.3 | 8867.9 | 201.1 | CLK-FPGAI1l | 4492.8 | 2970.8 | 16.9 | 4478.0 | 2966.4 119.3
FPGA12 | 7298.8 | 4247.0 | 24.2 7175.5 42284 | 142.0 | CLK-FPGAI12 | 3574.8 | 23245 | 159 | 3545.0 | 2326.9 111.2
. CLK-FPGA13 | 4456.0 | 3088.4 | 15.8 | 4428.1 3050.4 123.5
Ratio 1.009 1.014 | 1.038 1.002 1.004 7.921 Ratio 1.000 0999 1 1.0 0.998 1001 7236

Ratio: Calculated based on the experimental results of DrlGoOFPGAO1-FT in TABLE IIl and TABLE IV.
SA/IOBUF-DREAMPlaceFPGA do not support clock routing constraints on ISPD’2017 benchmarks.

the GO method used is DREAMPlaceFPGA [2]. We chose
to pre-train on the FPGAOl because it has the smallest
scale. The initial learning rate for pre-training is set to
7.5 x 107%, and the minimum value for the adaptive
reduction learning rate is set to 1 x 107>, The number of

B. Pre-Training and Fine-Tuning of IOBUF Placement
Model

We wused the proposed DrlGoFPGA for pre-training
the IOBUF placement model on the FPGAOl design of
ISPD’2016 benchmarks (named DrlGoFPGAO1-PT), where
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TABLE VI
EXPERIMENTAL RESULTS OF OPENPARF AND DRLGOFPGA ON ISPD’2016/2017 BENCHMARKS (HPWL AND WL IN 103)

Design OpenPARF [4] DrlGoFPGAO1-PT Design OpenPARF [4] DrlGoFPGAO1-PT

WL | HPWL | GPT(s) | WL | HPWL | GPT (s) WL | HPWL | GPT(s) | WL | HPWL | GPT (s)
FPGAOL | 3297 | 2133 | 157 3238 | 2085 | 157 | CLK-FPGAOI | 21342 | 16027 | 286 | 2170.1 | 1626.1 | 293
FPGAO2 | 6934 | 4825 | 252 6782 | 4822 | 221 | CLK-FPGAO2 | 2565.6 | 17272 | 294 | 2571.6 | 17304 | 302
FPGAO3 | 3003.0 | 19785 | 255 | 29580 | 1941.8 | 266 | CLK-FPGAO3 | 61153 | 44108 | 404 | 60084 | 43392 | 403
FPGAO4 | 6014.6 | 39862 | 251 | 5957.1 | 39616 | 26.1 | CLK-FPGAO4 | 43562 | 3022.6 | 427 | 43024 | 29984 | 39.6
FPGAO5 | 12188.6 | 7951.0 | 332 | 118275 | 77154 | 301 | CLK-FPGAO5 | 5293.8 | 37503 | 36.6 | 52845 | 37230 | 39.1
FPGAO6 | 59224 | 33139 | 286 | 5853.5 | 32804 | 30.1 | CLK-FPGA06 | 63785 | 45312 | 404 | 6336.1 | 45329 | 352
FPGAO7 | 10084.7 | 61596 | 27.9 | 10050.6 | 61509 | 29.0 | CLK-FPGAO7 | 2660.7 | 18499 | 285 | 2659.1 | 18363 | 29.6
FPGAOS | 93249 | 65548 | 31.8 | 92657 | 64553 | 323 | CLK-FPGAOS | 2035.7 | 14989 | 268 | 20382 | 1496.6 | 27.6
FPGAO09 | 125406 | 79793 | 318 | 12563.0 | 7971.4 | 32.5 | CLK-FPGA09 | 26042 | 18334 | 297 | 2607.6 | 18302 | 29.8
FPGAL0 | 55746 | 3212.9 | 300 | 55414 | 3181.1 | 309 | CLK-FPGAILO | 4664.1 | 32141 | 33.8 | 46417 | 31947 | 333
FPGAI1 | 131454 | 89234 | 32.6 | 129383 | 8846.7 | 337 | CLK-FPGALl | 43659 | 30374 | 32.6 | 43170 | 30103 | 323
FPGA12 | 69612 | 42489 | 33.8 | 68024 | 41648 | 341 | CLK-FPGAI2 | 34753 | 2365.1 | 302 | 3498.7 | 23888 | 31.5
. CLK-FPGA13 | 44409 | 3103.0 | 32.8 | 44219 | 3100.1 | 355
Ratio L0131 1012|0998 1 1.000 | 1.000 | 1.000 Ratio 1002 | 1.002 | 0997 | 1.000 | 1.000 | 1.000

DrlGoFPGAO1-PT: During pre-training model testing, the GO method uses OpenPARF.
OpenPARF and DrlGoFPGAO1-PT both support clock routing constraints on ISPD’2017 benchmarks.

! |
DrGOFPGAOI-FT |

T T T T T
|_ DrlGoFPGADT-PT

e of DriGoFPGA (min)

R DrAGoFPGADI-FT | 1

Fig. 7.

The pre-training and fine-tuning time of DrlGoFPGA.

parallelization is n,; = 12. The dimension of embedding
ILNR knowledge is njrnygr 12. The total number of
episodes is set to 100. To verify the generalization of
the DrlGoFPGAO1-PT, we designed the following method:
First, the DrlGoFPGAO1-PT was retrained on different
circuits to obtain the fine-tuned models (collectively named
DrlGoFPGAO1-FT). Then, the DrlGoFPGAO1-FT is applied to
the corresponding circuits for GP optimization, and compared
with the results obtained directly using DrlIGoFPGAO1-PT on
different circuits. To prevent performance degradation caused
by significant parameter changes, we set the initial learning
rate for fine-tuning to 7.5 x 107> and the number of fine-
tuning episodes to 10. Fig. 7 shows that DrlGoFPGAO1-PT
completes training in about 18 minutes, and DrlIGoFPGAO1-
FT completes fine-tuning in 2.4 hours.

C. Comparison With DREAMPlaceFPGA

TABLE III and TABLE IV compare the experimental re-
sults of DREAMPlaceFPGA and DrlGoFPGA. All placers use
elfplace-CPU [3] for LG and DP. To ensure the successful
routing of all circuits, the routability optimization in the GO
method was enabled during the GP optimization phase.

In TABLE III and TABLE IV, compared to DREAMPIlaceF-
PGA, the GPT of DrlGoFPGAOI-PT and DrlGoFPGAO1-
FT decreased by 26.7% and 29.0% respectively on the
ISPD’2016 benchmarks, and decreased by 16.8% and 22.2%
respectively on the ISPD’2017 benchmarks. The HPWL of
DrlGoFPGAO1-PT and DrlGoFPGAO1-FT decreased by 0.8%
and 1.2% respectively on the ISPD’2016 benchmarks, and both
decreased by 2.6% on the ISPD’2017 benchmarks. The WL of
DrlGoFPGAO1-PT and DrlGoFPGAOQ1-FT decreased by 1.1%
and 1.4% respectively on the ISPD’2016 benchmarks, and
decreased by 1.4% and 1.5% respectively on the ISPD’2017
benchmarks.

The comparison of runtime between DREAMPlaceFPGA
in DrlGoFPGAO1-PT and DREAMPlaceFPGA is shown in
Fig. 8. When optimizing the same circuit, DREAMPlaceFPGA
in DrlGoFPGA requires less runtime. Therefore, a more
optimal IOBUF position is beneficial for improving the speed
of GP optimization and the quality of placement and routing.

In TABLE III and TABLE 1V, the differences between
DrlGoFPGAO1-PT and DrlGoFPGAOI-FT on HPWL and WL
are only 0%-0.4% and 0.1%-0.3%, respectively. This proves
that DrlGoFPGAO1-PT has good generalization performance.

D. Comparison With SA/IOBUF-DREAMPlaceFPGA

Currently, there is a lack of research on the effect of IOBUF
placement on GP. To further explore whether the proposed
method for IOBUF placement optimization has advantages,
we conducted the following two comparative experiments:

1) SA-DREAMPlaceFPGA: We first uses the simulated
annealing (SA) algorithm to optimize the placement of the
IOBUEF. The proposed IPL method (see Part E of Section III)
was used to legalize the placement position of IOBUF. Once
the IOBUF placement optimization is completed, the IOBUF
position will be fixed, and then DREAMPlaceFPGA will be
used to complete the GP optimization. Finally, we will use the
GP metric HPWL as the objective function feedback to SA for
further iterative optimization. The parameter settings for SA
are as follows: The initial temperature is 7p = 100 and the

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on May 27,2025 at 02:24:35 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

B DREAMPlaceFPGA in DrlGoFPGAOI-PT = DREAMPlaceFPGA

30.00
25.00

2 20.00

[+

g 15.00

=

2 1000
5.00 II
0.00

ROy v RIS R
FEFLELELEL QQQ QLC’ LEL <3°
(a) ISPD’ 2016 benchmarks

Fig. 8.

E

E

- 100

o]

-9

[

5

8

E

S o

F: R S R B RS Ry
(GG C TP C P C < A L < P C P C A<

E S

s

E

S 150

o

E

£ 100

;g

E

)%

=]

> § O O
,,9“ ?9"_}\.\\\0\._\\,?\"‘0
Q“ ’Q‘- Q" & q“z"q‘- Q" & q‘ & &
~1- v\{-\-*&*—v‘{-\-
& & O’ [ A

Fig. 9. The optimization time distribution diagram of FPGA placement
optimization based on SA-DREAMPlaceFPGA.

termination temperature is 7y = 0.1. Due to DrlGoFPGAO1-
PT needing to be trained 100 times, SA-DREAMPlaceFPGA
needs to perform 100 optimization iterations. Because of
Toa” ~ 0.104 > Tf and Toa'® &~ 0.097 < Ty, the cooling
coefficient is set to o = 0.933.

2) IOBUF-DREAMPlaceFPGA: We use DREAMPIlace-
FPGA to optimize IOBUF and CDR instances together.
Specifically, we have added each IOBUF placement position
variable [x,y" = y + z] to the optimization variable of the
CDR instance placement position in the DREAMPlaceFPGA.
Then, the Adam optimizer and elfplace method in DREAM-
PlaceFPGA will be used to perform GO and update the IOBUF
variables. Finally, after each update of the IOBUF variable,
the proposed IPL method (see Part E of Section III) is used to
legalize the placement position of IOBUF (first, Algorithm 2
is used to quickly move IOBUF to avoid overlap. Then, based
on (11) and (12), the optimization variable [x, y'] of IOBUF
is represented back to [x, y, BEL z]).

We respectively used the elfplace-CPU [3] and router
of OpenPARF [4] to perform LG, DP, and routing.
TABLE V compares the experimental results of SA/IOBUF-
DREAMPIlaceFPGA (the results of SA-DREAMPlaceFPGA
obtained by testing the GP results after optimization) and
DrlGoFPGA. Fig. 9 shows the optimization time distribution
of GP optimization based on SA-DREAMPlaceFPGA.

In TABLE V, compared to SA-DREAMPlaceFPGA,
the GPT of DrlGoFPGAOI-FT decreased by 3.8% on
the ISPD’2016 and 2.2% on the ISPD’2017 benchmarks.
The HPWL of DrlGoFPGAOI-FT decreased by 1.4%
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The comparison of optimization time between DREAMPlaceFPGA in DrlGoFPGAO1-PT and DREAMPlaceFPGA.

on the ISPD’2016 and was almost the same on the
ISPD’2017 benchmarks. The WL of DrlGoFPGAOI-FT
decreased by 0.9% on the ISPD’2016 and was the same
on the ISPD’2017 benchmarks. Compared to IOBUF-
DREAMPlaceFPGA, DrlGoFPGAO1-FT achieved over 7x
acceleration on the ISPD’2016 and ISPD’2017 benchmarks,
respectively. The HPWL of DrlGoFPGAO1-FT decreased
by 0.4% on the ISPD’2016 and 0.1% on the ISPD’2017
benchmarks. The WL of DrlGoFPGAOI-FT decreased by
0.2% on the ISPD’2016 and increased by 0.2% on the
ISPD’2017 benchmarks.

Although IOBUF-DREAMPlaceFPGA can achieve compa-
rable results to DrlGoFPGAO1-FT on HPWL and WL, the
GPT is relatively long. The results of SA-DREAMPlaceFPGA
achieved comparable results to DrlGoFPGAO1-FT on the
ISPD’2017 benchmarks. However, in Fig. 9, the total opti-
mization time of SA-DREAMPlaceFPGA on the ISPD’2016
and ISPD’2017 benchmarks are about 45 hours, which is
about 42 hours longer than the pre-training and fine-tuning
time of DrlGoFPGA. The inability of SA-DREAMPlaceFPGA
to obtain end-to-end IOBUF placement models will result in
increasingly expensive optimization time costs.

In summary, the proposed DrlGoFPGA performs better
compared to SA/IOBUF-DREAMPlaceFPGA.

E. Comparison With OpenPARF

To further demonstrate the performance of DrlGoFPGA,
were placed the GO method with OpenPARF during model
testing, where OpenPARF has integrated LG, DP, and routing
tools. TABLE VI presents the relevant experimental results.

As shown in TABLE VI, compared to OpenPARF, the GPT
of DrlGoFPGAOQ1-PT increased by 0.2% and 0.3% respec-
tively on the ISPD’2016 and ISPD’2017 benchmarks. The
HPWL of DrlGoFPGAOI-PT decreased by 1.2% and 0.2%
respectively on the ISPD’2016 and ISPD’2017 benchmarks.
The WL of DrlGoFPGAO1-PT decreased by 1.3% and 0.2%
respectively on the ISPD’2016 and ISPD’2017 benchmarks.
In TABLE VII, ‘Clls’ are clock illegal instances. ‘MVD’
is the maximum violation distance in ClIs. ‘AVD’ is the
average violation distance in ClIs. Compared to OpenPAREF,
DrlGoFPGAO1-PT can reduce 3 CIIs in the GP phase
of the ISPD’2017 benchmarks. Although DrlGoFPGAO1-PT
increased MVD by 3.4 pum, it decreased AVD by 0.1 um.

Therefore, DrlGOFPGAO1-FT exhibits better performance
in different GO methods and has an advantage in handling
clock routing constraints during the GP phase.
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TABLE VII

CLOCK ROUTING CONSTRAINT ANALYSIS! OF OPENPARF AND
DRLGOFPGA IN THE GLOBAL PLACEMENT PHASE

TABLE IX

EXPERIMENTAL RESULTS! OF DREAMPLACEFPGA-MP AND
DRLGOFPGA oN MLCAD 2023 BENCHMARKS

ISPD’2017 OpenPAREF [4] DrlGoFPGAOQ1-PT
benchmarks CllIs MVD AVD CllIs MVD AVDA
Avg. 23 37.9 9.1 20 413 9.0

DrlGoFPGAO1-PT: During model testing, the GO method uses OpenPARF.

TABLE VIII
THE MLCAD 2023 PUBLIC BENCHMARK SUITE STATISTICS

Design Statistics
Number 141
#Instances 558K-711K
LUT/FF/BRAM/DSP (%) 70%-84%/38%-47%/80%-90%/80%-90%

0.65-0.72/0-22
0-285K
0%-44.29%
{2,5,7,10,60} X
{2,5,7,10,30} X

Rent’ /#Regions
#Instances within Regions
Instances within Regions (%)
Cascaded DSP Macros Size
Cascaded BRAM Macros Size

F. Comparison With DREAMPlaceFPGA-MP/OpenPARF 3.0

We extend DrlGoFPGA to DREAMPlaceFPGA-MP (MP)
and OpenPARF 3.0 (OP 3.0), respectively. The MP is
an open-source GPU-accelerated placer supporting cascade-
shaped macros and region constraints, including IOBUFs. The
OP 3.0 employs GO with look-ahead legalization to handle
IOBUFs, achieving competitive results with minimal runtime
overhead. The MP and OP 3.0 were developed for the MLCAD
2023 benchmark [32]. The target FPGA for the benchmark is
the Ultrascale+ xcvu3p ffvc1517-1-1 device. The placement
coordinate distribution of the IOBUF is [x € [68, 138],y €
[0,30,---,270]1x10, BELz € [0,1,---,25]1x26], and it is
converted to [x,y" = y + z]. According to DrlIGoFPGA,
establish coordinate mapping sets between the IOBUF canvas
and the actual architecture: f, : [0, 1] — [68,138] and f, :
[0,1,---, 260lix260 — [0,1,---,25,30,---,275]1x260,
and define the IOBUF canvas size in DRL as n, x 1 x
2 x 260. The MLCAD 2023 public benchmark originally
consisted of 180 public designs. Due to MP and OP 3.0 not
currently supporting the placement of URAM instance types,
we referred to OP 3.0 for benchmark corrections. At present,
there are 141 designs that can be implemented on MP and OP
3.0, respectively, and the benchmark composition is shown in
TABLE VIII. We run the DrlGoFPGA (n,; = njpyr = 12)on
Design_1, where the GO method used during training is
MP, and the pre-trained model is named DrlGo-Design_1-PT.
TABLE IX and TABLE X respectively provide a comparison
of DrlGoFPGA with MP and OP 3.0. Due to the license
restriction of Vivado in MLCAD 2023 contests, we cannot get
the routed WL from Vivado and use HPWL to approximate
the final routed WL.

TABLE IX shows that compared to MP, using the
pre-trained model Drlgo-Design_1-PT for other design GP
optimizations achieved a 13.2% reduction in GPT and a 1.4%
reduction in HPWL. TABLE X shows that compared to OP

IThe clock routing constraint analysis for each design on ISPD’2017
benchmarks, as well as the HPWL and GPT value for each design on MLCAD
2023 benchmarks are available at: https://dx.doi.org/10.21227/049d-r758

Metrics DREAMPlaceFPGA-MP [30] | DrlGo-Design 1-PT
Geo. Mean Ratio Geo. Mean | Ratio

GPT (s) 39.256 1.132 34.820 1.000
HPWL (in 103) 5486.139 1.014 5414.813 1.000

DrlGo-Design_1-PT: During model testing, the GO method uses MP.

TABLE X

EXPERIMENTAL RESULTS! OF OPENPARF 3.0 AND
DRLGOFPGA oN MLCAD 2023 BENCHMARKS

Metrics OpenPARF 3.0 [3 IJ DrlGo-Design 1 -PT
Geo. Mean Ratio Geo. Mean Ratio
GPT (s) 39.628 0.989 40.091 1.000
HPWL (in 10°) 6119.375 1.021 5998.222 1.000

DrlGo-Design_1-PT: During model testing, the GO method uses OP 3.0.

3.0, DrlGo-Design_1-PT achieved a 2.1% reduction in HPWL
and a 1.1% increase in GPT. Therefore, DrlIGoFPGA has
good scalability on different FPGA architectures, and can still
achieve better GP results compared to MP and OP 3.0.

G. Ablation Study

To explore the effect of various factors on the DrIGoFPGA,
we conducted a series of ablation studies on reward function,
embedding ILNR knowledge dimensions, IOBUF legalization
constraints, and the combination of different NNs and GNNs.

1) The Effect of Parallel Optimization and ILNR Embedding
on Solution Performance: Fig. 10 shows the comparison
of the IOBUF placement model training results on the
FPGAO1 between the DrlIGoFPGAO1-PT, the DrlIGoFPGAO1-
PT without ILNR embedding (denoted as w/o ILNR
embedding), and the DrlGoFPGAOI-PT without parallel
optimization (denoted as w/o parallel optimization). Without
the embedding of ILNR information, it is difficult for the agent
to explore optimal solutions within 100 episodes. Compared
to w/o parallel optimization, DrlGoFPGAOI-PT not only
explores better solutions but also has higher stability during
algorithm optimization. Therefore, the parallelizable reward
function and embedding ILNR knowledge into CNN proposed
in this paper can improve the ability of agents to explore
optimal solutions.

2) The Effect of the Policy Network Structure With Multi-
Action Sampling on Solving Speed of DRL: We studied
the effect of the numbers of parallelization on the training,
fine-tuning, or testing time of DRL (this ablation study is
named DrlGoFPGA-n ;). TABLE XI shows the experimental
results of DrlGoFPGA-n, on the FPGAOl, FPGAO3, and
FPGAO6, where njpyg =12 and np = 1,2, 4, 8,12, 16, 32.
As the number of parallelization increases, the time required
to complete an IOBUF placement based on DRL in one
time step gradually decreases. Therefore, the policy network
structure with multi-action sampling proposed in this paper can
accelerate the training, fine-tuning, or testing time of DRL.

3) The Effect of Numerical Settings for the Number of
Parallelization and Embedding ILNR Knowledge Dimension
on Solution Performance: We designed the following three
ablation studies and ultimately provided recommended values:
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Fig. 10. Comparison of DrIGoFPGAO1-PT, w/o ILNR embedding and w/o
parallel optimization.

TABLE XI
EXPERIMENTAL RESULTS OF DRLGOFPGA- npl

FPGAO1 FPGAO3 FPGAO0O6
Mg n, (Mopur =151) (y0p0r =401) (7050 = 601)
IPT (s)
1 0.80 1.33 1.83
2 0.63 0.89 1.17
4 0.55 0.69 0.86
12 8 0.51 0.62 0.69
12 0.49 0.55 0.63
16 0.48 0.53 0.59
32 0.47 0.50 0.56

IPT: The time required to complete an IOBUF placement based on DRL in
one time step during model training, fine-tuning or testing.

o Study the HPWL value changes based on DrlGoFPGA
on the FPGAO1 design when nypyg = 12, ny =
2,4,---,32.

o Study the HPWL value changes based on DrlGoFPGA
on the FPGAOl design when n, = 12, njiyg =
2,4,---,32.

o Study the HPWL value changes based on DrlGoFPGA on
the FPGAOI design when np =nj yg =2,4,---,32.

We use DrlGoFPGA-ny-njpyg to uniformly represent
the three ablation experiments. TABLE XII show that the
numerical changes in the number of parallelization and
embedding ILNR knowledge dimensions have a certain effect
on the optimal HPWL obtained by the IOBUF placement
model. When n,; = njpyg = 12, HPWL obtains the optimal
values. Therefore, we suggest that both n;;yg and n,; take a
value of 12.
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TABLE XII
EXPERIMENTAL RESULTS OF DRLGOFPGA-np, —njpNg
(Myppgs1,) (12,2) | (124) | (12,8) | (12,12) | (12,16) | (12,32)
HPWL 190.7 | 193.8 | 190.1 188.7 191.4 191.6
(Myps11,0) (2,12) | (4,12) | (8,12) | (12,12) | (16,12) | (32,12)
HPWL 1964 | 189.0 | 191.2 188.7 189.8 192.8
(Mypgs1,0) 2,2) (4,4) (8,8) | (12,12) | (16,16) | (32,32)
HPWL 1933 | 200.3 | 189.4 188.7 189.7 189.4

HPWL (in 10*): Obtained by testing with the pre-trained placement model.

4) The Effect of the Proposed IPL Method on Solution
Performance: Fig. 11 shows the results of DrlGoFPGAO]1-
PT using the IPL method and using action resampling for
legalization on FPGAOl. The using action resampling for
legalization here refers to the fact that the IOBUF placement
based on DRL method does not use the IPL method. Instead,
after performing multi-action sampling at each time step, the
already sampled actions are masked according to Algorithm 3
(lines 2-3 and 9-10 of code). If the i-th action overlaps
with the already sampled action, it needs to be resampled
(lines 5-8 of code). In Fig. 11, using action resampling for
legalization is difficult to explore an optimal solution within
100 episodes. Therefore, the proposed IPL method is a rule-
embedding that is beneficial for agents to explore optimal
solutions.

Algorithm 3 Using Action Resampling for Legalization

Input: The probability distribution probsnpixgﬂ of actions
at each time step, the action set Actionnplxl obtained after
performing multi-action sampling, the initialize action mask
mask = {(x, y)lx =y = l}g32x1

Output: The legal actions set Action,, x1 at each time step
1: for i =0 to ny — 1 do:

2: if mask[Action[i]] == 1 then:

3: mask[Action[i]] < O

4: else:

5: flag < True

6: while flag then:

7: probs <« probs o mask o is Hadamard
multiplication

8: Actionnplxl[i] < probs.resample()[i]

9: if mask[Action[i]] == 1 then:

10: mask[Action[i]] < 0, flag < False

Furthermore, we also investigated the effects of different
reward function designs and the combination of different NNs
(including Transformer [33] and recurrent neural network [34])
and GNN on solution performance, and experimental results?

show that our work is superior.

Therefore, the above ablation studies validated the effec-
tiveness and superiority of the policy network structure with
multi-action sampling, parallelizable reward function, ILNR
graph creation method, and IPL method designed in the
DrlGoFPGA framework.

2The experimental results of the effect of different reward function designs
and combinations of different NNs and GNN on solution performance are
available at: https://dx.doi.org/10.21227/049d-r758
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V. CONCLUSION

This paper proposes a FPGA GP placement method
based on DRL and GO, DrlGoFPGA. In DrlGoFPGA,
we designed a policy network structure with multi-action
sampling, a parallelizable reward function, an ILNR graph
creation method based on the IOBUF netlist, and an
IPL method. The experimental results on ISPD’2016/2017
and MLCAD 2023 benchmarks show that compared with
DREAMPlaceFPGA, DREAMPlaceFPGA-MP, OpenPAREF,
and OpenPARF 3.0, DrlGoFPGA reduced GPT by 13.2%-
29.0%, HPWL by 0.2%-2.6%, and WL by 0.2%-1.5%.
Compared with SA/IOBUF-DREAMPlaceFPGA considering
IOBUF placement optimization, DrlGoFPGA improves GP
speed by 2.2%-7x, reduces HPWL by 0.1%-1.4%, and WL
by 0.2%-0.9%. The SA-DREAMPIlaceFPGA requires 45 hours
to complete placement optimization for all circuits, which is
42 hours longer than the pre-training and fine-tuning time of
DrlGoFPGA. The results of the pre-trained and fine-tuned
model have only 0%-0.4% and 0.1%-0.3% differences on
HPWL and WL, respectively, proving that the pre-trained
model has good generalization performance. We conducted
a series of ablation studies on the proposed policy network
structure, parallelizable reward function, ILNR graph creation
method, and IPL method, verifying the effectiveness and
superiority of the proposed DrlGoFPGA framework.

We believe that DrlGoFPGA can provide new directions
for developing FPGA physical design engines. In the future,
we will focus on researching how to enable pre-trained models
to quickly adapt to new circuits and improve generalization.
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