
AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D
Chiplet Systems Design

Zichao Ling
Beijing University of Posts and

Telecommunications
Beijing, China

lingzichao@bupt.edu.cn

Lin Li
Beijing University of Posts and

Telecommunications
Beijing, China

lilin20030420@163.com

Yi Huang
Beijing University of Posts and

Telecommunications
Beijing, China

2021212483@bupt.cn

Yixin Xuan
Beijing University of Posts and

Telecommunications
Beijing, China

xuan_yixin@bupt.edu.cn

Jianwang Zhai∗
Beijing University of Posts and

Telecommunications
Beijing, China

zhaijw@bupt.edu.cn

Kang Zhao
Beijing University of Posts and

Telecommunications
Beijing, China

zhaokang@bupt.edu.cn

Abstract
The “Memory Wall” dilemma remains a critical challenge in modern
computing systems. While latency-sensitive applications increas-
ingly rely on costly on-chip SRAM to meet performance require-
ments, SRAM scaling faces bottleneck. Currently, Chiplet-based tech-
niques present a promising solution to this challenge by enabling
optimized trade-offs between latency, capacity, and cost.

This paper introduces AuxiliarySRAM, a design methodology
that decouples SRAM resources into on-die and extended chiplets,
enabling elastic capacity-latency scaling. Key contributions include:
(1) a lightweight network-on-chip (NoC) with simplified crossbars,
dual local ports, and address prediction to reduce average latency by
49.29% and boost bandwidth by 79.35%; (2) a evaluation framework
integratedwith Bayesian optimization (BO) to resolve Pareto-optimal
on/off-die capacity ratios, accelerated by pruning strategies (1.93×
speedup); and (3) system-level evaluation provides Pareto frontier-
based design guidelines and demonstrates its cost-saving advantages.

CCS Concepts
• Hardware→ Modeling and parameter extraction.

Keywords
Memory Architecture, Chiplet System, Lightweight Network on
Chip, Design Space Exploration

ACM Reference Format:
Zichao Ling, Lin Li, Yi Huang, Yixin Xuan, Jianwang Zhai, and Kang Zhao.
2025. AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D Chiplet
Systems Design . In Great Lakes Symposium on VLSI 2025 (GLSVLSI ’25), June
30-July 2, 2025, New Orleans, LA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3716368.3735238

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’25, New Orleans, LA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1496-2/2025/06
https://doi.org/10.1145/3716368.3735238

(a) Overview

(b) Latency first mode

(c) Capacity first mode

Figure 1: The concept of AuxiliarySRAM Chiplet architecture.

1 Introduction
Termed the “Memory Wall” phenomenon [1] exacerbated by semi-
conductor process scaling limitations, underscores a fundamental im-
balance: Peak hardware floating-point operations per second (FLOPS)
have outpaced dynamic random-access memory (DRAM) bandwidth
by orders of magnitude (about 100x in the past 20 years) [2]. As a
result, memory constraints dominate performance limitations in the
post-Moore era. This predicament predominantly arises from two
categories of applications: bandwidth-bound and latency-sensitive.
Currently, high bandwidth memory (HBM) [3] provides an effective
solution for bandwidth-bound applications, e.g., graphics computing
and AI acceleration. However, latency-sensitive applications (e.g.,
autonomous driving decision-making and high-frequency trading
systems) still rely on high-speed yet costly caches consisting of
on-chip static random-access memory (SRAM).

Despite the reliance of applications on high-speed on-chip mem-
ory continues to escalate—even occupying over 50% of die area
(e.g., Cortex-A76 [4])—on-chip SRAM arrays cannot be arbitrarily
expanded. This fundamental limitation stems from two critical con-
straints: a) manufacturing costs escalate exponentially with SRAM
footprint expansion, particularly at advanced process nodes below
7nm [5]; and b) capacity scaling paradoxically increases access la-
tency due to elongated addressing paths and signal propagation
delays. Consequently, a latency-capacity-cost trilemma emerges,
compelling designers to make trade-offs.

Chiplet, a revolutionary heterogeneous integration technology,
employs silicon interposers and through-silicon via (TSV) to enable
modular system assembly, presenting new possibilities for solving

https://orcid.org/0009-0002-0942-6991
https://orcid.org/0009-0004-5039-8392
https://orcid.org/0009-0003-0441-3638
https://orcid.org/0009-0004-8731-5896
https://orcid.org/0000-0002-1581-3536
https://orcid.org/0000-0003-0502-8523
https://doi.org/10.1145/3716368.3735238
https://doi.org/10.1145/3716368.3735238

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Zichao Ling, Lin Li, Yi Huang, Yixin Xuan, Jianwang Zhai and Kang Zhao

Latency

CapacityCostsave

Register
L1Cache
L2Cache
LLCache
DRAM*
OurWork

Figure 2: Position of AuxiliarySRAM in traditional Memory
Architecture. *HBM is classified into DRAM.

this dilemma [6]. This paradigm significantly alleviates the substan-
tial design, verification, and manufacturing overhead associated with
monolithic system-on-chip (SoC) implementations [7]. Engineering
practice (e.g., 3D V-Cache® [8]) demonstrate that fully disaggrega-
tion of low-level caches achieves unprecedented capacity scaling.
Nevertheless, this approach incurs fundamental design hesitancy
due to the complex process and inherent latency penalties introduced
by comprehensive inter-Chiplet interconnect integration.

We posit that such concerns can be eliminated through a trade-off
design and algorithmic synergy, thereby proposing an innovative
AuxiliarySRAM Chiplet architecture (Figure 1(a)) inspired by the
auxiliary fuel tank mechanism in jet fighters. This structure disas-
sembles the on-chip memory of a specific functional module into
on-die retention and extended Chiplet. External Chiplet activation
is dynamically determined by application contexts through adap-
tive scheduling algorithms, enabling elastic switch between latency-
sensitive (Figure 1(b)) and capacity-prioritized (Figure 1(c)) modes,
while achieving simultaneous energy efficiency optimization. Key
design blueprints are outlined below:

A. Design elastic capacity scaling with multi-tiered latency man-
agement to optimally fulfill workload demands while enhancing
energy efficiency.

B. Design a multi-design compatible SRAM chiplet shared library
to reduce non-recurring engineering (NRE) costs and minimize
the main die area.

In this work, we primarily focus on the hardware exploration and
modeling-based evaluation of the proposed design paradigm. Fig-
ure 2 illustrates the position of AuxiliarySRAM in the traditional
memory architecture. Firstly, we develop a multi-bank chiplet em-
ploying a lightweight network-on-chip (NoC) and establish a quanti-
tative model. To address the design space challenge in on-die/off-die
optimization, we implement Gaussian process (GP)-based Bayesian
optimization (BO) to identify the Pareto frontier. Furthermore, we
incorporate this methodology into the GIA [9, 10] chiplet integration
framework, systematically assessing composite chiplet performance
metrics in system-level contexts. Finally, we address parameter ex-
plosion and placement constraints by optimizing the selection engine
and annealing process, boosting framework performance. The main
contributions are as follows:

• We propose AuxiliarySRAM, an innovative partition decou-
pling on-chip memory into on-die part and extended chiplet,
establishing a cost-effective method to overcome conventional

Table 1: Specification of Typical Chiplet Interconnect

Specification ACC AIB BoW SerDes UCIe
Max Rate

(Gbps/wire) 128 2 32 224 32

Latency (ns) 6 3.56 2-4 / <2

Power (pJ/bit) 2.5 0.85 0.25-10 0.8 0.25-
1.25

Transmission Serial Parallel Parallel Serial Serial

SRAM constraints through dynamic scaling across multiple
capacity-latency tiers.
• We design a lightweight on-chip network and adopted series
of optimization techniques to enable the SRAM chiplet to re-
duce access latency and increase maximum bandwidth while
maintaining scalability, attaining practical applicability.
• We expand the capabilities of the original Chiplet evaluation
framework, integrated a BO method with GP to solve the Pareto
frontier of capacity ratios, and accelerated the solving process
through pruning.
• Experimental results demonstrate that the lightweight NoC
reduces average latency by 49.29% and enhances maximum
bandwidth by 79.35%, while system-level evaluation reveals that
the AuxiliarySRAM scheme achieves a maximum cost reduction
of 26.3% under equivalent capacity, and the pruning method
attains a 2.13x speedup.

2 Preliminaries
2.1 Chiplet Interconnction
Chiplet interconnection forms the backbone of communication in
chiplet-based architectures, enabling data exchange between hetero-
geneous silicon dies within a single package. These interfaces called
Die-to-Die (D2D), typically employ advanced packaging technolo-
gies such as silicon interposers, flip-chip, TSVs, and microbumps to
establish dense vertical interconnects with sub-millimeter pitches.

As a latency-sensitive design, the performance of D2D intercon-
nects critically determines the viability of SRAM Chiplet integration.
Modern D2D standards (summarized in Table 1) adopt distinct phys-
ical and protocol-layer strategies to balance bandwidth, energy effi-
ciency, and latency between TX/RX, substantiating the foundation
for the quantitative modeling framework.

2.2 Evaluation Framework
We adopt GIA design automation framework [9, 10] to systematically
evaluate and optimize Chiplet systems. It includes four stages: chiplet
selection, network topology generation, chiplet placement, and inter-
poser mapping. 1) Chiplet selection employs integer linear program-
ming (ILP) to map application tasks onto chiplets while minimizing
power, latency, and cost under bandwidth and resource constraints. 2)
Network topology generation clusters high-communication chiplets
using graph partitioning to reduce latency. 3) A simulated annealing
(SA) based placer optimizes thermal profiles and interposer power
by iteratively perturbing chiplet positions and orientations. Finally,
4) a routability-driven mapping algorithm assigns channels and con-
figures routers to realize the target topology, prioritizing high-traffic
paths.

AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D Chiplet Systems Design GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

RRR

RRR

Chiplet I/O Port #0

| Address Programmer | VC Controller |

Group B

Bank #3

addr #(1, 1)

Group A

Bank #0

addr #(0, 1)

Group A

Bank #1

addr #(0, 0)

Group B

Bank #2

addr #(1, 0)

Group B

Bank #7

addr #(1, 2)

Group B

Bank #6

addr #(1, 3)

Group A

Bank #5

addr #(0, 3)

Group A

Bank #4

addr #(0, 2)

Chiplet I/O Port #1

| Address Programmer | VC Controller |

e.g. single VCe.g. parallel VC

8
b
it

s
b
u
s

w
id

th
,
6
4
b
 p

er
 f

li
t

U
C

Ie

Figure 3: 2×4 SRAM Bank Mesh Chiplet with dual D2D-ports.
Each memory bank is configured with an 8 KB capacity, 64-bit
data width, and 1 read/write port shared by up to 2 routers.

3 Design Methodologies
NoC architecture is chosen over conventional shared-bus or fully-
connected structure to simultaneously satisfy scalability, parallelism,
and large capacity requirements. In this work, we propose a light-
weight, high-performance, and energy-efficient NoC-based SRAM
Chiplet that employs a 2D Mesh topology (as Figure 3) to mini-
mize area occupation and routing design complexity. The design
incorporates a streamlined router unit featuring a simplified crossbar
structure and accelerated routing algorithms, while implementing an
address prediction mechanism to mitigate cross-boundary overhead.
The architecture is further enhanced by a group-aware configurable
address space allocation strategy that improves system flexibility.

3.1 Lightweight NoC Interconnection
Router Design. Routers serve as the core components of NoC,
primarily consisting of a virtual channel (VC) allocator, a crossbar
switch, and a buffer module. Each router incorporates 4 bidirectional
directional ports and supports up to 2 local access ports, which
could optimize interleaved access and cross-border latency. The
buffer is implemented through a depth-configurable synchronous
FIFO, which pipelines data flits received from neighboring routers
or local network interface (NI) units. The routing algorithm employs
deterministic XY dimension-ordered routing, with path selection
strictly adhering to a horizontal-then-vertical priority scheme.
Thin Crossbar. It is observed that traffic in different directions
exhibits significant differences. Thereby we propose a simplified
crossbar architecture by optimizing directional bypass and dual local
port mediation based on Work [11], avoiding the 𝑂 (𝑁 2) spatial
complexity while reducing delays from 𝑁 × 1 Mux.

Let 𝑃 = {𝑁, 𝑆, 𝐸,𝑊 , 𝐿𝐿, 𝐿𝑅} denote the set of ports (North, South,
East, West, LocalLeft, LocalRight), 𝑀𝑑 :1 represents a 𝑑-input mux.
𝜎∗ represents the signal selector. Then we have:
• Local ports 𝐿𝐿, 𝐿𝑅 integrate an𝑀4:1 with inputs from {𝑁, 𝑆, 𝐸,𝑊 },
governed by a 2-bit 𝜎𝐿 ∈ {00, 01, 10, 11}.
• Directional pairs (𝑁 ↔ 𝑆 , 𝐸 ↔𝑊) are interconnected via𝑀2:1
modules, enabling direct passthrough selection through control
signals 𝜎𝑁𝑆 , 𝜎𝐸𝑊 ∈ {0, 1}.
• Orthogonal pairs aremediated through local port via a two-phase
protocol (e.g., 𝑁 → 𝐿𝐿 → 𝐸): 1) The 𝑀4:1 at 𝐿 assigns source
port selection (𝑁) by encoding directional input 𝜙 (𝑁) → 𝜎𝐿 ,

where 𝜙 : 𝑃 \ {𝐿} → {00, 01, 10, 11} bijectively maps ports to
control codes; 2) The destination port’s𝑀2:1 (e.g., 𝐸) reconfig-
ures 𝜎𝐸𝑊 to prioritize 𝐿-sourced data, enabling non-blocking
connectivity with optimized multiplexer allocation.

The control logic employs a distributed arbitration scheme, where
each𝑀2:1 and𝑀4:1 operates under locally generated 𝜎 signals syn-
chronized via a lightweight FSM. This reduces crossbar complexity
from 𝑂 (|𝑃 |2) to 𝑂 (|𝑃 |) in directional pairs, with worst-case path
latency bounded by 𝜏M2:1 + 𝜏M4:1 for cross-directional transfers.
Address Prediction. A lightweight self-adaptation address predic-
tion mechanism in router nodes, consisting of three key components:
1) A sliding window register𝑊 = {𝐴𝑡−𝑛, 𝐴𝑡−𝑛+1, ..., 𝐴𝑡 } storing the
last 𝑛 addresses in history; 2) A gradient-based predictor computing
address increments Δ𝑖 = 𝐴𝑖 − 𝐴𝑖−1 (𝑖 ∈ [𝑡 − 𝑛 + 1, 𝑡]); 3) A FSM
classifying traffic patterns. If the router receives burst transaction
request or Δ𝑖 remains constant Δ𝑖 = Δ𝑖−1 for 𝑘 consecutive samples,
the FSM triggers burst mode, pre-allocating VCs to the predicted
destination node via priority mask.

Pivotal features include a neighbor-region detection module and
a power coordination module. The former dynamically calculates
address offsets and pre-activates adjacent bank node routing paths
or downstream banks on virtual channels via FSM when thresh-
olds are exceeded. The latter integrates a distributed power-gating
architecture, where a router wake-up predictor analyzes address
access periodicity to dynamically issue power mode instructions.
Concurrently, a bank-local sleep manager drives a tri-state machine
(active/standby/shutdown) to disconnect bank node power when idle
periods exceed thresholds, while pre-charge circuits ensure wake-up
latency constraints [12].

3.2 Multi-Bank Reconfiguration
Decoupling physical banks indices from logical address spaces en-
ables flexible post-silicon reconfiguration. Each router node inte-
grates up to 𝐵 = 2 independent banks, where the physical address
space is partitioned into 𝐵 × 𝐶 memory units (𝐶 denotes single-
bank capacity). For interleaved access, an address mapping function
M(𝐴) decomposes the global address 𝐴 into bank-selection bits 𝐴𝑘

(𝑘 = log2 𝐵) and bank-offset address 𝐴𝐶 , defined as:

M(𝐴) = (𝐴 ≫ (𝑛 − 𝑘)) mod 𝐵,

𝐴𝐶 = 𝐴 mod 𝐶.
(1)

where 𝑛 is the global address bus width. An odd-even interleaving
strategy governs dual-bank access: M(𝐴) = 0 triggers Bank0 access
at 𝐴𝐶 , while other cases target Bank1, enabling parallel distribu-
tion of contiguous address requests across banks. This theoretically
elevates peak bandwidth to 𝐵×𝜔 (𝜔 : single-bank interface bitwidth).

We introduce a programmable address offset register Δ ∈ {0, 1}𝑘 to
enable post-silicon address reconfiguration, dynamically optimizing
storage allocation per application to minimize latency. The revised
mapping function becomes:

M′ (𝐴) = ((𝐴 ⊕ Δ) ≫ (𝑛 − 𝑘)) mod 𝐵. (2)

Furthermore, upon detecting bank faults or process-induced vari-
ation performance asymmetry, the system updates Δ to redistribute
hot-zone address ranges, ensuring load balancing.

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Zichao Ling, Lin Li, Yi Huang, Yixin Xuan, Jianwang Zhai and Kang Zhao

Input OutputEnhanced Design Automation Framework

(a) Chiplet Selection
PPAC Report

(b) Topology

Generation

(d) Router

Mapping

Candidate Chiplet Sram Chiplet

CPU[14core,0.35W,…] 4MB@1port

DSP[196alu,0.5W, …] 8MB@2port

GPU[256core.30W,…] 16MB@2port

Task Flow Constraints

b

d

c

e
a

Update Pareto Frontier

Surrogate Model

Construction

Acquisition Function

Optimization

Feasible Domain

Probabilistic Assessment

R

ILP Pruning

On-die Ratio

Determination

R

Thermal Optimize

Holistic Phase

(c) SA Placement

Perturbation

Neighbor Pruning

Param.

Configuration

Task mapping

Traffic testing

Active / Passive

Interposer

Address

ConfigurationSram Chiplet

System Layout

𝑃𝑒𝑎𝑘 𝑇ℎ𝑒𝑟𝑚𝑎𝑙
𝑃𝑜𝑤𝑒𝑟 𝐵𝑢𝑑𝑔𝑒𝑡
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

……

Figure 4: The proposed framework for AuxilarySRAM Chiplet systems extended from GIA.

4 Framework Augmentation
Figure 4 illustrates the framework for the automated design and
evaluation of chiplet systems incorporating AuxiliarySRAM. The
framework first introduces a quantitative modeling approach to
systematically determine the on/off-die ratio for each design re-
quirement. Subsequently, the optimal candidate is selected from a
pool of input SRAM chiplet options, which is then subjected to GIA
workflow to evaluate critical metrics, including power, performance,
area, thermal, and cost efficiency. Furthermore, two novel pruning
strategies are introduced to enhance the computational efficiency.

4.1 Quantitative Modeling
From the designers’ perspective, once the on-chip memory speci-
fications across the processor are frozen, it’s crucial to determine
whether it is suitable to implement using chiplet approaches and to
decide the optimal ratio of on/off-die capacity. This decision impacts
the subsequent selection from the SRAM library to achieve an excel-
lent design. We address this issue through quantitative modeling.

Formally, we define the system parameters as a quintuple:

D = ⟨𝐶𝑜𝑛,𝐶𝑜 𝑓 𝑓 ,𝑊 , 𝑆𝑡𝑠𝑣,𝑇𝑡𝑒𝑐ℎ⟩ (3)

where 𝐶𝑜𝑛 ∈ [0,𝐶𝑡𝑜𝑡𝑎𝑙] represents the capacity of on-die SRAM.
Assume that 𝐶𝑡𝑜𝑡𝑎𝑙 is given, then 𝐶𝑜 𝑓 𝑓 = 𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑜𝑛 represents
the capacity of extended chiplet volume.𝑊 ∈ {32bit, 64bit, 128bit}
represents the width of the data bus in chiplet interconnection.
𝑆𝑡𝑠𝑣 ∈ {UCIe, SerDes, BoW, ACC, AIB} indicates the protocol stan-
dard shown in Table 1. 𝑇𝑡𝑒𝑐ℎ ∈ {28nm, 14nm, 7nm, 5nm, 3nm} indi-
cates the technology node.
Optimization Objective. The proposed objective function is de-
fined as a triple-objective function, aiming to performmulti-objective
optimization under given constraints:

min
D

(
𝑓𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑓𝑝𝑜𝑤𝑒𝑟 , 𝑓𝑐𝑜𝑠𝑡

)
. (4)

Latency Modeling. Latency is related to modular functionality and
should establish the relationship between capacity and delay based
on specific application scenarios. Generally, we have:

𝑓latency = 𝛼1𝐻on︸ ︷︷ ︸
On-chip

+ 𝛾1
𝐷data
𝐵link︸ ︷︷ ︸

Interconnect

+𝛼2 (1 − 𝐻on) ·
(
𝛽1 + 𝛽2

𝐶off
𝐷block

)
︸ ︷︷ ︸

Chiplet Access

,
(5)

where 𝐻on is the on-die part access rate, 𝐷data is task-level data
transfer volume, 𝐵link =𝑊 · 𝑓clk is the bandwidth of the link, 𝐷block
is data block size, and 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are coefficients.

Power Modeling. The total power consumption consists of leakage
power and dynamic operating power :

𝑓power = 𝑃leakage + 𝑃dynamic . (6)

The leakage power dissipation is formulated as:
𝑃leakage = 𝐼leak ·𝑉dd · 𝐴sram︸ ︷︷ ︸

Chip leakage

+ 𝐼tsv_leak ·𝑉tsv︸ ︷︷ ︸
TSV leakage

,

(7)

where 𝐴sram is activate SRAM area (𝑚𝑚2), computed as 𝐴sram =
𝐶total
𝜌sram

, and 𝜌sram is the memory density.
Dynamic power is calculated per read/write operation:

𝑃dynamic =
1

𝑇task

∑︁
𝑖∈{on,off,link}

𝐸𝑖 · 𝑁𝑖 , (8)

where 𝑇task is task duration, 𝑁𝑖 is the number of operations, and 𝐸𝑖
is the energy in On-die part, Off-die part or transfer link:

𝐸on = 𝐶cap_on ·𝑉 2
dd · 𝛼sw,

𝐸off = 𝐶cap_off ·𝑉 2
dd · 𝛼sw,

𝐸link = 𝐶cap_link ·𝑉 2
link · 𝐿 + 𝐸tsv ·

𝐷block
𝑊

.

(9)

where𝐶cap_* is capacitance, 𝐿 is average interconnection length, 𝐸tsv
represents energy consumed by single TSV to transmit 1 bit (pJ/bit).
Cost Modeling. Cost analysis primarily references the original
GIA method [9, 10]. It integrated the costs associated with chip
fabrication, assembly, IO overhead, and the impact of power:

𝑓cost =
1

𝑌assembly

(
𝑁𝑐∑︁
𝑖=1

Codie,𝑖 + Coassembly

)
(10)

𝑌assembly = 𝑌
𝑁𝑐

align × 𝑌
𝑁𝑝

bond (11)

where 𝐶𝑜𝑖 represents cost, 𝑌align is the yield of alignment process,
and 𝑌bond is the yield of the bonding process.
Design Space. In practical design processes 𝑇tech is typically prede-
termined. Thus based on the objective function (i.e, Equation (4)),
the design space can be constructed as a 3-dim parameter space:

S = {(𝐶𝑜𝑛/𝐶𝑡𝑜𝑡𝑎𝑙 ,𝑊 , 𝑆𝑡𝑠𝑣) |x ∈ D, 𝑥5 = 𝑡tech} . (12)

Inequality constraints could be incorporated into the formulation.
Then the feasible solution domain is bounded by this hypersurface:

F =

{
x ∈ S

����� 𝑀∧
𝑖=1

𝑔𝑖 (x) ≤ 0

}
s.t. 𝑔𝑖 (x) ≤ 0, ∀𝑖 = 1, 2, . . . , 𝑀.

(13)

It is a multi-objective optimization challenge, where objectives
are inherently conflicting. Indeed, objective functions (4) exhibit

AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D Chiplet Systems Design GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

Algorithm 1 Core Process of Bayesian Optimization
Input: Design space dimensionality 𝐷 , maximum iteration count

𝑁max, convergence threshold 𝜀
Output: Pareto front solution set 𝑃
1: // Stage 1: Initial Sampling
2: (𝑋,𝑌,𝐶) ← LatinHypercubeSampling(𝑁init, 𝐷)
3: 𝑃 ← FilterParetoFront(𝑌,𝐶)
4: for 𝑡 ← 1 to 𝑁max do
5: // Stage 2: Surrogate Model Construction
6: GP← GaussianProcess(𝑋,𝑌)
7: 𝜌feas ← CalcFeasibility(𝐶)
8: // Stage 3: Acquisition Function Optimization
9: EHVI← 𝜆𝑥 : E[HVI(𝑥) · 𝜌feas (𝑥)]
10: 𝑥next ← argmax

𝑥∈X
EHVI(𝑥)

11: // Stage 4: Evaluation and Update
12: (𝑦new, 𝑐new) ← Evaluate(𝑥next)
13: 𝑋 ← 𝑋 ∪ {𝑥next}, 𝑌 ← 𝑌 ∪ {𝑦new}, 𝐶 ← 𝐶 ∪ {𝑐new}
14: 𝑃 ← UpdateParetoFront(𝑃,𝑦new, 𝑐new)
15: if ΔHV(𝑃) < 𝜀 then
16: break
17: end if
18: end for
19: return 𝑃

a nonlinear coupling relationship, with their dominance relation-
ship showing non-monotonic characteristics when the gradients
of multiple nonlinear functions change drastically. Moreover, the
feasible region delineated by inequality constraint parameter spaces
can form complex fractal boundaries or discrete connected domains
due to the nonlinearity of the constraint function group, resulting
in non-convex and discontinuous feasible regions.

Thus, the concept of Pareto optimality becomes particularly cru-
cial. It effectively demonstrates the trade-offs between different ob-
jectives by identifying all non-dominated solutions, thereby avoiding
the partiality and limitations brought about by single-objective opti-
mization. Therefore, the optimization problem can be formulated as
finding the Pareto frontier solution set, that is:

P =
{
D∗ ∈ F

��∄D′ ∈ F, 𝑓𝑖 (D′) ≺ 𝑓𝑖 (D∗),
∀𝑖 ∈ {latency, power, cost}

} (14)

where the relationship ≺ is defined as:

D′ ≺ D∗ ⇐⇒ ∀𝑖, 𝑓𝑖 (D′) ≤ 𝑓𝑖 (D∗)
∧ ∃ 𝑗, 𝑓𝑗 (D′) < 𝑓𝑗 (D∗) .

(15)

4.2 BO-GP Solution
To solve the complex optimization problem mentioned above, as
detailed in Algorithm 1, we employ Bayesian Optimization with
Gaussian Processes (BO-GP), which has been widely used in chip
exploration [13]. The process consists of four stages:
Initialization. The design spaceD (with variables in Equation (3)) is
sampled via Latin Hypercube Sampling (LHS) [14] to generate 𝑁init
initial configurations (line 2). Each candidate point is evaluated using
physics-based models for objectives (Equation (4)) and constraints
(𝑔1-𝑔7). Only feasible solutions satisfying all constraints initialize
the Pareto front P (line 3).

Surrogate Modeling. Independent GP models are trained for each
objective function (𝑓latency, 𝑓power, 𝑓cost) to capture nonlinear rela-
tionships with design variables (line 6). Binary classification GPs
predict constraint satisfaction probabilities 𝑃 (𝑔 𝑗 ≤ 0) for each 𝑔 𝑗 ,
with joint feasibility probability 𝑃feasible =

∏
𝑗 𝑃 (𝑔 𝑗 ≤ 0) computed

to define the feasible region (line 7).
Acquisition Function Optimization. The expected hypervolume
improvement (EHVI) [15] (line 9) quantifies improvement potential
in the hypervolume dominated by P relative to reference point fref.
Feasibility probabilities from constraint GPs are integrated into EHVI
to prioritize constraint-satisfying regions. The next candidate 𝑥next
is selected by maximizing EHVI using gradient-based optimization
(e.g., L-BFGS-B [16]) (line 10).
Update and Convergence. New point is evaluated via high-fidelity
models to obtain 𝑦new and 𝑐new (line 12). The dataset {𝑋,𝑌,𝐶} is
updated, and GP models are retrained. The Pareto front P is updated
with non-dominated solutions using fast non-dominated sorting
(line 14). Convergence is declared when the relative hypervolume
change over three iterations drops below 𝜖 = 1% (lines 15-17).

4.3 Pruning Optimization
Extended SRAM part requires binding to its corresponding host die
to form a complex. However, the original GIA framework [9] treats
all chiplets as independent entities, necessitating modification to the
selection phase for constraints such as edge-I/O interfaces placement.
Additionally, the baseline SA permits arbitrary Chiplet orientations
and potentially occupies central regions. This generates redundant
solutions and increases iterations without improving quality. There-
fore, we conduct further optimization on GIA framework.
Pre-screening. The ILP engine is extended to optimize SRAM in-
stance selection alongside chiplet mapping. A binary decision vari-
able 𝑠𝑘 is introduced to indicate whether the 𝑘-th SRAM instance is
selected. The revised objective function in this sub-stage minimizes
a weighted sum of memory cost, power (𝑃), and latency (𝐹𝑇):

𝑘Mem ·
∑︁

𝑠𝑘Cost(𝑠𝑘) + 𝑘𝑃 · 𝑃 + 𝑘𝐹𝑇 · 𝐹𝑇
(𝑘Mem + 𝑘𝑃 + 𝑘𝐹𝑇 = 1) .

(16)

Two critical constraints are added:

(1) Total SRAM area must not exceed the budget, enforced by∑
𝑠𝑘 · 𝐴𝑘 ≤ 𝐴budget.

(2) Selected instances must align with TSV interface capabilities,
𝑠𝑘 = 1 =⇒ Interface𝑘 ∈ 𝑆tsv.

Neighbor Pruning. A pruning strategy is integrated into the simu-
lated annealing process to enforce peripheral placement of SRAM
Chiplets. The chip area is divided into peripheral and core regions,
with the peripheral zone being defined as a convex polygon along
the die edges. During solution perturbation, candidate placements
are rejected if any SRAM instance spans the core region or aligns
its long axis toward the chip center. Invalid configurations are dis-
carded prior to energy evaluation, reducing computational overhead.
For cases where peripheral placement is temporarily infeasible, a
penalty term proportional to the SRAM-to-edge distance is added to
the energy function to guide optimization. This approach preserves
the global search capability of SA while systematically enforcing
design-specific geometric constraints.

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Zichao Ling, Lin Li, Yi Huang, Yixin Xuan, Jianwang Zhai and Kang Zhao

Table 2: Comparison Across Different Mesh and Router Configuration.

Configuration 2×2@1port 2×4@1port 2×4@2ports 4×4@2ports 8×4@3ports

𝜏𝑎𝑣𝑔 𝐵𝑚𝑎𝑥 𝜏𝑎𝑣𝑔 𝐵𝑚𝑎𝑥 𝜏𝑎𝑣𝑔 𝐵𝑚𝑎𝑥 𝜏𝑎𝑣𝑔 𝐵𝑚𝑎𝑥 𝜏𝑎𝑣𝑔 𝐵𝑚𝑎𝑥

Baseline 15.07 4.71 20.45 4.37 18.01 5.47 26.51 5.18 36.15 6.48
+ Thin Crossbar 13.43 5.03 18.97 4.69 16.45 5.92 25.33 5.53 35.12 6.91
+ Dual Localport 10.59 6.48 14.59 6.04 13.87 7.97 21.08 7.55 31.18 8.60
+ Address Predictor 9.48 7.34 13.32 6.98 12.86 9.46 19.76 8.76 28.77 9.53
+ Grouped Address 9.67 7.33 13.18 6.99 9.78 10.65 15.70 10.68 17.12 11.64

5 Evaluation
We conduct experiments from two perspectives to systematically
assess whether the proposed design meets the criteria outlined in
the blueprints. For blueprint A, we employed chiplet-level RTL sim-
ulation and architectural simulator cross-validation to check basic
functionality and characterize critical performance metrics, includ-
ing access latency, bandwidth, and design reference parameters.
Then for blueprint B, system-level evaluation integrates both on-die
memory and off-chip chiplet library into the GIA framework [9, 10]
to explore architectural scalability and quantify cost-effectiveness
through comprehensive design space exploration.

5.1 Experimental Setup
We establish the baseline NoC based on an enhanced version of the
open-source Verilog LisNoC [17, 18] implementation. Each SRAM
bank node is synthesized using OpenRAM [19], configured as an
8KB single-port SRAM (64-bit width × 1024 wordlines). The de-
sign operates at 1.0V supply voltage, with operating frequency au-
tonomously optimized by the OpenRAM toolchain. Circuit-level
timing and power characteristics, including read/write latency and
dynamic energy per access, are extracted through HSPICE simula-
tions using the generated netlist and freePDK45.

To validate functional correctness and quantify performance im-
provements, we integrate the extracted circuit metrics into a cycle-
accurate network traffic C++ simulator (e.g. [20]). The simulator
uniformly injects 64-byte read/write request packets from a central-
ized master node, with destination addresses randomized across the
mesh. These requests are concurrently forwarded to both the base-
line RTL implementation and our modified design to ensure bit-exact
equivalence, while recording key parameters (e.g., 𝐻on,𝑇task, 𝑁𝑖).

5.2 Chiplet-level Evaluation
Table 2 quantifies the performance enhancements achieved through
progressive architectural optimizations across five mesh configura-
tions. The baseline architecture demonstrates latency (𝜏𝑎𝑣𝑔, 𝑛𝑠) and
bandwidth (𝐵𝑚𝑎𝑥 ,𝐺𝑏𝑝𝑠) characteristics that scale predictably with
network complexity, with 𝜏𝑎𝑣𝑔 increasing from 15.07 (2×2@1port) to
36.15 (8×4@3ports) as node count grows. The thin crossbar modifi-
cation reduces 𝜏𝑎𝑣𝑔 by 10.9%-15.6% across all configurations by sim-
plifying arbitration logic and minimizing wire congestion through
streamlined crosspoint allocation. This structural optimization en-
ables corresponding 𝐵𝑚𝑎𝑥 improvements of 6.8%-10.9%, demonstrat-
ing that interconnect simplification directly enhances both latency
and throughput metrics.

0 1 2 3

0

1

2

3

3.05 4.24 4.66 3.03

2.41 2.79 2.91 2.21

1.86 2.21 2.27 1.81

1.51 1.83 1.78 1.52

(a) Uniform

0 1 2 3

0

1

2

3

6.53 10.38 10.34 6.51

3.89 6.58 6.68 3.82

2.74 3.87 3.91 2.72

2.13 2.74 2.74 2.13

(b) Grouped

Low

High

Figure 5: 4×4@2ports with vertical bisection (8 nodes/group)
bandwidth (Gbps) heatmap. (1, 0) (2, 0) are IO routers.

The dual local port enhancement introduces parallel memory
access paths, effectively decoupling read/write operations and re-
ducing queuing delays. This modification yields a significant 23.5%-
31.6% 𝜏𝑎𝑣𝑔 reduction compared to baseline, with 𝐵𝑚𝑎𝑥 improvements
reaching 47.9% in the 2×4@2ports configuration. Address predic-
tion further optimizes memory access patterns through speculative
prefetching, achieving additional 8.9%-13.3% 𝜏𝑎𝑣𝑔 reductions in mid-
sized meshes by masking access latency. However, its effectiveness
diminishes in larger 8×4@3ports configurations (9.53 vs 8.60 𝐵𝑚𝑎𝑥),
revealing limitations in prediction accuracy under high concurrency.

Grouped addressing demonstrates superior scalability through
spatial partitioning of memory addresses, which reduces bank con-
flicts. This optimization delivers a 20.6%𝜏𝑎𝑣𝑔 reduction in 8×4@3ports
versus the previous version, while boosting 𝐵𝑚𝑎𝑥 by 22.1% through
optimized request coalescing. Figure 5 clearly exhibits a multi-level
characteristic, demonstrating the feasibility of elastic design.

The hierarchical combination of these techniques achieves maxi-
mum 62.6% latency reduction and 79.6% bandwidth improvement
in the largest configuration, confirming that localized optimizations
(crossbar streamlining, dual-port access) synergize effectively with
system-level strategies (prediction, address grouping). This validates
the architecture’s capability to maintain performance scalability
across diverse topologies while preserving design modularity.
Power Analysis. Injection rate sweep identifies three operational
regimes governing power performance trade-offs (Figure 6). It can be
distinguished into linear scaling phase (0-5k requests/10k cycles,𝑅2 =
0.998), saturation onset (7k-8k requests) and full saturation (>8k
requests). The dynamic gating strategy reduces total energy by 8.05%
on average exclusively in the linear scaling phase, primarily due to
the random traffic generation, necessitating in-depth analysis of
workload-specific behaviors.

5.3 System-level Evaluation
On/Off-die Ratio. Figure 7 reveals the distribution of on-die ca-
pacity (𝐶on) along the Pareto front in a 𝐶total = 8𝑀𝐵 case. 72% of

AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D Chiplet Systems Design GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

2 4 6 8 10
0

500

1,000

1,500

2,000

2,500

Packets (·103/10k cycles)

Po
w
er

(m
W
)

4*4 Active
4*4 Gating
2*4 Active
2*4 Gating

Figure 6: Injection Sweep for Always-active and Gating.

1 2 3 4 5 6 7 8
On-die Capacity (MB)

0

50

100

150

200

So
lu

tio
n

C
ou

nt

Frequency
Median Latency

13

14

15

16

17

18

19

20

21

La
te

nc
y

(n
s)

Figure 7: 𝐶on Distribution.

10 12 14 16 18
Latency (ns)

0.5

1.0

1.5

2.0

2.5

3.0

Po
w

er
 (W

)

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: Pareto Frontier.

solutions concentrate within 2.6-6.8 MB, with median 𝐶on = 4.1 MB.
This clustering reflects the balance between diminishing returns in
latency reduction and escalating power costs at higher 𝐶on. Median-
bound analysis in Figure 7 marked as red line quantifies latency
reduction versus 𝐶on growth. A negative correlation (𝑟 = −0.76)
between latency and𝐶on confirms the theoretical model 𝑓latency. Fig-
ure 8 shows a more global distribution with a clear Pareto front.
Non-dominated solutions exhibit latencies from 9.2ns to 14.5ns and
power from 0.21W to 2.47W, with normalized costs ranging 0.3-0.6.

Pareto-optimal analysis defines two design regimes. Optimal on-
die capacity ratio 𝜅 selection criteria:

• 𝜅 ≈ 0.40: Cost-constrained IoT/edge devices,
• 𝜅 ≈ 0.64: Latency-critical performance systems,
• 𝜅 ≈ 0.53: Balanced general computing default.

System Cost. Table 3 shows the cost reductions of design cases used
by GIA [10] compared to monolithic solutions. At low volume (500K),
NRE-dominated systems (CPUs-1 and CPUs-3) achieve 26.3% and
24.5% cost reductions via ≥ 70% intra-chiplet reuse. In contrast, the
GPUs-1 requires decoupled I/O controllers (45% off-chip proportion)
due to high bandwidth demands, yielding a lower cost optimization
(20.9%) than CPU-centric designs. Nevertheless, it achieves 19.7%
improvement over monolithic solutions, underscoring the general ap-
plicability of Chiplet-based architectures for heterogeneous systems.
At high volume (10M), RE-dominated systems prioritize packaging:
CPUs-1 reduces RE costs by 7.8% through 70% intra-chiplet density
and bond yield 𝑌bond in Equation (11), while CPUs-4’s low complex-
ity limits savings (5.2%). CPUs-2 exhibits 22.1% vs. 6.9% optimization
across volumes, demonstrating process-node tradeoffs.
Speedup. Our optimized pruning strategy is evaluated against the
original SA for GIA tasks [10]. Results show a 1.93× acceleration
in average convergence time with maximum temperature deviation
<1.2°C. This improvement stems from 68.7% fewer invalid ILP evalu-
ations and 41.2% enhanced local search efficiency via neighborhood
pruning without quality loss.

Table 3: Total On-die Ratio, System Cost (normalized) Reduc-
tions compared to Monolithic with Manufacturing Quantities
of 500K and 10M and Solve Time(sec) Reduction.

Design On-die
Ratio

Cost Save Solve Time

500K 10M GIA [10] (s) Ours (s)

CPUs-1 40% 24.5% 7.8% 481.65 243.26
CPUs-2 35% 22.1% 6.9% 337.27 240.90
CPUs-3 25% 26.3% 8.5% 67.62 32.21
CPUs-4 40% 18.7% 5.2% 52.76 25.73
GPUs-1 55% 20.9% 6.3% 755.87 354.86

Avg. - 22.5% 5.94% (Speedup) 1.93×

6 Conclusion
This paper proposes AuxilarySRAM, a lightweight on-chip memory
architecture featuring a latency-optimized lightweight NoC-based
Chiplet implementation.We develop analytical quantificationmodels
and integrate them into the enhanced GIA framework for system-
level evaluation, showing cost efficiency improvement and promising
potential for latency-intensive computing applications.

Acknowledgment
This work is supported by the National Key R&D Program of China
(2022YFB2901100), the National Natural Science Foundation of China
(No. 62404021), and the Beijing Natural Science Foundation (No.
4244107, QY24216, QY24204).

References
[1] Wm A Wulf et al. 1995. Hitting the memory wall: Implications of the obvious.

ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.
[2] David A Patterson. 2004. Latency lags bandwith. CACM 47, 10 (2004), 71–75.
[3] Hongshin Jun et al. 2017. Hbm (high bandwidth memory) dram technology and

architecture. In Proc. IMW. 1–4.
[4] Miao Liu et al. 2025. Processing-Near-Memory with Chip Level 3D-IC. In Proc. AS-

PDAC. 302–307.
[5] Bon Woong Ku et al. 2016. How much cost reduction justifies the adoption of

monolithic 3D ICs at 7nm node?. In Proc. ICCAD. 1–7.
[6] Shixin Chen et al. 2025. The Survey of 2.5 D Integrated Architecture: An EDA

perspective. In Proc. ASPDAC. 285–293.
[7] Dylan Stow et al. 2019. Investigation of cost-optimal network-on-chip for passive

and active interposer systems. In Proc. SLIP. 1–8.
[8] John Wuu et al. 2022. 3D V-Cache: the Implementation of a Hybrid-Bonded 64MB

Stacked Cache for a 7nm x86-64 CPU. In Proc. ISSCC, Vol. 65. 428–429.
[9] Fuping Li et al. 2022. GIA: A reusable general interposer architecture for agile

chiplet integration. In Proc. ICCAD. 1–9.
[10] Fuping Li et al. 2024. Chipletizer: Repartitioning socs for cost-effective chiplet

integration. In Proc. ASPDAC. 58–64.
[11] Boris Grot et al. 2011. Kilo-NOC: a heterogeneous network-on-chip architecture

for scalability and service guarantees. ACM SIGARCH computer architecture news
39, 3 (2011), 401–412.

[12] R. Chadha and J. Bhasker. 2012. An ASIC Low Power Primer: Analysis, Techniques
and Specification. Springer New York.

[13] Chen Bai et al. 2021. BOOM-Explorer: RISC-V BOOM Microarchitecture Design
Space Exploration Framework. In Proc. ICCAD. 1–9.

[14] Jon C Helton et al. 2003. Latin hypercube sampling and the propagation of
uncertainty in analyses of complex systems. Elsevier RESS 81, 1 (2003), 23–69.

[15] Kaifeng Yang et al. 2019. Multi-Objective Bayesian Global Optimization using
expected hypervolume improvement gradient. Elsevier SWEVO 44 (2019), 945–956.

[16] Ciyou Zhu et al. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM TOMS 23, 4 (1997), 550–560.

[17] Kazem Cheshmi et al. 2013. Quota setting router architecture for quality of service
in GALS NoC. In Proc. RSP. 44–50.

[18] Rakotojaona Nambinina et al. 2022. Extension of the lisnoc (network-on-chip)
with an axi-based network interface. In Proc. ICCMC. 682–686.

[19] Matthew R Guthaus et al. 2016. OpenRAM: An open-source memory compiler. In
Proc. ICCAD. 1–6.

[20] Luming Wang et al. 2025. Simulation and Exploration for Multi-Chiplet Systems
using Open-Source Tools and Heuristic Algorithm. In Proc. ISEDA.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Chiplet Interconnction
	2.2 Evaluation Framework

	3 Design Methodologies
	3.1 Lightweight NoC Interconnection
	3.2 Multi-Bank Reconfiguration

	4 Framework Augmentation
	4.1 Quantitative Modeling
	4.2 BO-GP Solution
	4.3 Pruning Optimization

	5 Evaluation
	5.1 Experimental Setup
	5.2 Chiplet-level Evaluation
	5.3 System-level Evaluation

	6 Conclusion
	References

