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Abstract—Sparse general matrix-matrix multiplication
(SpGEMM) serves as a fundamental operation in real-world
applications such as deep learning. Different from general
matrix multiplication, matrices in SpGEMM are highly sparse
and therefore require a compact representation. This places an
additional burden on data preprocessing and exchanging and
also causes irregular memory access patterns, which can in
turn lead to communication and computation bottlenecks. To
break these bottlenecks, we present VSpGEMM, a hardware
accelerator for SpGEMM that is tailored and optimized on
Versal ACAP. Firstly, a new storage format called BCSX is
proposed in VSpGEMM, which offers a unified and block-wise
compression strategy to deal with both row-major and column-
major representation of non-zero data, enabling fixed-pattern
memory accesses and effective data preloading. Secondly, a
multi-level tiling mechanism is introduced to decompose the
holistic SpGEMM into multiple computation granularities that
fit into the AI Engines (AIEs) on Versal in a hierarchical manner,
enhancing data reuse. Thirdly, a hybrid partitioning scheme
is presented to orchestrate both the AIEs and programmable
logic (PL) for intermediate product merging, which together
resolve the issues of high memory utilization and communication
demand. Experimental results demonstrate a 2.65× speedup
over state-of-the-art (SOTA) GEMM design on Versal and an
average 33.62× improvement in energy efficiency compared
to cuSPARSE on RTX 4090 GPU, showing the efficacy of
VSpGEMM.

I. INTRODUCTION

General matrix-matrix multiplication (GEMM) is a widely

used operation defined as A × B = C, characterized by

accessing matrices A and B in a fixed pattern. However,

in many real-world applications, matrices usually have high

sparsity, meaning most elements are zeros. In these cases, the

conventional GEMM solution becomes inefficient due to the

large number of redundant computations performed on zero

elements. This inefficiency highlights the need for SpGEMM,

where the matrices involved in the computation are sparse.

SpGEMM must handle non-zero elements with random spatial

locations, which poses challenges including the increased com-

munication overhead of transferring intermediate products and

the limited computational intensity with unpredictable memory

access to index the non-zero elements from compressed matrix

elements, which can severely slow down the applications.

In academia, some methods have been proposed to acceler-

ate SpGEMM on different hardware platforms, including CPUs

[1], [2], GPUs [3]–[6], and FPGAs [7], [8]. These solutions

mainly focus on the optimization of three aspects, namely,
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storage formats for storing and indexing sparse matrices [9],

algorithms to perform matrix multiplication [10], and workload

distribution methods [11]. CPUs and GPUs offer flexible

control units and parallelized computation cores to optimize

SpGEMM in all computation phases, but they incur high power

consumption, which undermines energy efficiency. FPGAs en-

able customized operations for indexing elements from storage

formats but they are limited by on-chip resources when the

problems become complicated. Recently, AMD/Xilinx intro-

duced the Versal Adaptive Compute Acceleration Platform

(ACAP) [12], a heterogeneous system composed of AI Engines

(AIEs), programmable logic (PL), and a processing system

(PS). This platform excels in delivering flexible customization

for hardware implementation, with computationally intensive

multiplications handled by high-performance AIEs and com-

plex control logic managed by PL, which is a promising

substrate for efficient SpGEMM implementation.

Despite the high computational power provided by Versal,

accelerating SpGEMM on Versal is non-trivial. The recent

work CHARM [13] has proposed an efficient method to

accelerate GEMM on Versal, which leverages the regular

data access patterns of GEMM to achieve efficient pipelining.

Nevertheless, new challenges arise when the matrices become

sparse. The first challenge lies in excessive memory access

to the local memory of AIEs, where the predominant row-

wise computation pattern under compressed sparse row (CSR)

or compressed sparse column (CSC) format contributes to

irregular and unpredictable data accesses, leading to poor

data reuse and avoiding data preloading when indexing in the

AIE memories. Second, the limited bandwidth in Versal and

the high communication demand of transferring intermediate

products of SpGEMM can trigger a communication bottleneck,

severely hampering overall performance.

To fully unleash the computational power of Versal for

SpGEMM acceleration, we propose three innovative optimiza-

tion strategies: a new compressed storage format for efficient

data processing, a multi-level tiling scheme for scalable matrix

decomposition, and a hybrid workload partitioning scheme

to coordinate different computation resources. These strate-

gies collectively facilitate parallelism of computation, enhance

memory management, and reduce communication overhead,

finally delivering salient gains in performance and energy effi-

ciency over existing SpGEMM implementation on mainstream

computation platforms. The contributions of this paper are

summarized as follows:
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• We introduce a new compressed storage format, BCSX,

unifying the representation of CSR and CSC in blocks.

This storage format enables fixed-pattern data accesses,

preserves high data locality, and supports data preloading.

• We propose a multi-level tiling scheme to hierarchically

distribute the computation of SpGEMM to multiple AIEs

while enhancing data reuse during computation.

• We develop a hybrid workload partitioning method that

efficiently allocates the intermediate product merging

operations to AIEs and PL, ensuring minimal commu-

nication overhead.

• To the best of our knowledge, we present the first attempt

to optimize SpGEMM on Versal ACAP, finally achieving

a 2.65× speedup over CHARM on Versal and a 33.62×
energy efficiency gain against cuSPARSE on the RTX

4090 GPU.

II. RELATED WORK

Previous works on accelerating SpGEMM using GPUs,

CPUs, and FPGAs have proposed various optimizations, in-

cluding hash tables and the ESC method. However, these

approaches often suffer from poor data locality or high com-

munication overhead. For instance, the work [5] on NVIDIA

Pascal GPUs reduces scratchpad memory by grouping ma-

trix multiplication (MM) computation tasks and predicting

memory size for output matrices. However, it incurs sig-

nificant overheads from probing hash tables and repeatedly

accessing discontinuous memory under the CSR format. The

ESC method [14] enhances the parallelism of GPU cores

by merging the sorted, index-adjacent MM results, but it

faces substantial communication overhead due to the trans-

fer of intermedia products generated during the expansion

stage of ESC. FSpGEMM [8] improves data reuse in Gus-

tavson’s method [15] with row-wised computation pattern

by introducing the compressed sparse vector (CSV) format

and a row reordering strategy, maximizing on-chip resource

utilization on FPGAs. Nonetheless, the CSV format does not

fundamentally eliminate the overheads brought by the row-

wised computation pattern, and the row reordering strategy

introduces additional computational overhead. HASpGEMM

[16] improves workload balance concerning computation and

memory access through a micro-benchmarking scheme on

asymmetric CPUs but remains constrained by the overheads

inherent in the row-wise pattern. In summary, existing methods

on SpGEMM acceleration still do not effectively address the

problems of high communication costs and random memory

access during computation.
On the Versal platform, CHARM [13] is the SOTA work

on accelerating GEMM across all heterogenous conponents of

Versal, whereas it still struggles with sparse matrix processing.

This is because the inherent strategies to process the dense

matrices are incompatible with sparse matrix operations that

primarily involve compact data representations with non-zero

elements. In contrast, our approach seeks to establish fixed

memory access patterns and reduce communication overhead

for exchanging intermediate products in SpGEMM, which are

essential for efficiently processing sparse matrices.
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Fig. 1 Architecture of VSpGEMM

III. VERSAL ACAP ARCHITECTURE

The Versal ACAP is a heterogeneous platform that integrates

AIEs, PL, and PS with a Network on Chip (NoC). The

AIEs consist of very-long instruction word (VLIW) processors

equipped with single instruction multiple data (SIMD) vector

units, operating at a maximum frequency of 1.25 GHz, en-

abling high parallelism for computation-intensive applications.

Each processor in the AIEs is denoted as an AIE tile, which

comprises an AIE core for computation, a data memory for

program storage and caching, and an AXI4-Stream switch [17]

for stream access to the data memory.

Communications within the AIEs are categorized into two

types: buffer-based access and stream-based access. The lo-

cal data memory inside the AIE tile is composed of eight

memory banks, allowing for horizontal or vertical data access

to neighboring tiles. This configuration provides a four-way

memory access which exposes four data memories to one AIE

tile. The AXI4-Stream switches divide stream-based access

into two modes: cascade-stream for horizontally adjacent tiles

and normal streams for all tiles. Notably, the cascade-stream

offers a 384-bit data width to transfer large data in one single

clock cycle, while normal streams merely support a 32-bit data

width per cycle. The PLIO interfaces are responsible for the

communication between AIE and PL, each of which offers

eight 64-bit output channels and six 64-bit input channels

operating at the PL clock frequency, totaling 1.2 TB/s for

VCK190 with 39 PLIOs. Data transmission between the PS

and PL should use DDR memory as an intermediate buffer and

the bandwidth is 100 GB/s. Consequently, a communication

gap arises between the high performance of AIE tiles and the

limited PLIO and DDR bandwidth, which could become a

bottleneck to deploying applications on Versal.

IV. DESIGN METHODOLOGY

In this section, we introduce the acceleration paradigm,

VSpGEMM, whose overall architecture is depicted in Fig. 1.

It decomposes the holistic computation process of SpGEMM

into two types of partitions: the MAC-Partition (MAP) and the

hybrid ADD-Partition (ADP).

The MAP conducts MMs at a fine-grained level, while

the ADP merges the intermediate products to form the final

results at a coarse-grained level. Based on this, the MAP can

be further divided into a multiplication engine (MUE) and

an accumulation engine (AUE) to perform the outer product

for SpGEMM, which constitutes the main part of MM. The
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Fig. 2 BCSX Storage Format: (a) The structure of block-

wise matrices in BCSX format in memory. (b) The matrix

Block(1,1) in 2D dense form. (c) The BCSX format of

Block(1,1) in row-major. (d) The BCSX format of Block(1,1)

in column-major. Attribute descriptors in BCSX are marked in

blue, pointers in red, and indices and values in yellow.

hybrid ADP is designed to be conducted partially in AIEs

and PL to minimize the transmission of intermediate products

generated by MAPs. The complete architecture of VSpGEMM

is supported by the proposed BCSX storage format, multi-level

tiling scheme, and hybrid workload partitioning strategy.

A. BCSX Storage Format

The commonly used storage formats like CSR and CSC

form the foundation of various works on SpGEMM since

they preserve row-wise and column-wise data locality, re-

spectively. The prior arts attempt to use a single storage

format to construct the two input matrices (denoted as A and

B), and adopt Gustavson’s algorithm for SpGEMM. In such

cases, although matrix A exhibits high data locality, matrix

B usually experiences irregular and unpredictable memory

accesses, preventing effective memory optimizations such as

data preloading and reuse. Moreover, CSR and CSC are

monolithic representation methods that compress the entire

matrix at once, making it difficult to partition and distribute

computation workloads to hardware resources at a fine-grained

level. To address these issues, in this paper, we propose a new

storage format called Blocked Compressed Sparse eXtension

(BCSX). This storage format aims to merge the strengths of

these conventional storage formats, offer a consistent storage

method for both row- and column-major representations, and

facilitate data access in a regular and block-wise pattern. In

the rest of this section, we illustrate the details of the BCSX

format, the implementation of BCSX on AIE, and the memory

access patterns supported by BCSX.

Construction of BCSX Format. BCSX utilizes five de-

scriptors named BIAS, BMAJ, BROW, BCOL, BSTEP, and

three arrays named idx*, ptr*, and val* to capture the structural

information and non-zero elements in a per-block manner.

Fig. 2 demonstrates BCSX with an 8×8 matrix as an instance.

The five descriptors identify the arrays in matrix blocks from

memory and facilitate vectorized loading. The BIAS serves as

a relative offset of the idx* array to the memory address of

TABLE I Features of BCSX compared to CSR and CSC

Storage
Format

Memory
Access Row

Major
Column
Major

Block-wise
Structrue

Vectorized
Loading

CSR � � � �
CSC � � � �

BCSX � � � �

the current block. The BMAJ is a binary value that specifies

whether the matrix is constructed in row-major (0) or column-

major (1) order. When both the input matrices A and B are

constructed in row-major order with BMAJs set to 0, a row-

wise computation pattern is enabled. If the two BMAJs are

set to 1 and 0 respectively, an inner product method can be

applied. Conversely, when the BMAJs are set to 0 and 1, the

outer product can be conducted, which is the adopted algorithm

in this paper. With BMAJ to indicate the order, all computation

patterns can be flexibly supported. The BROW and BCOL

reveal the spatial coordinates of the current block within the

entire sparse matrix, aiding both AIE and PL in organizing

matrix blocks for multiplication and merging. The BSTEP

determines the vector length of AIEs to fetch data from data

memory, which could be adjusted in light of matrix sparsity

and workload for a single AIE tile, thus enabling a dynamic

load step for AIE tiles working on various matrix blocks.

The ptr* array records the number of non-zero elements

in each line of the current block. Specifically, each element

of ptr* records the cumulative number of non-zeros for the

current and preceding rows or columns. The idx* and val*

arrays store all the non-zeros of the current block in BMAJ

order, with each element in these two arrays corresponding

one-to-one.

Vectorized Loading on AIE. Different from CSR and CSC,

BCSX skips the prefix 0 and captures the exact number of

rows or columns in blocks to facilitate vectorized loading in

AIE kernels. Within each AIE tile, memory access to BCSX

for blocks in B is vectorized, which loads data in vectors of

length BSTEP, which is a power of two. However, the prefix

0 in conventional formats impedes data alignment because the

length of ptr* becomes non-divisible by a vector step, requiring

an extra load to fetch the last few ptr* entries. In an AIE

tile, the iterator for vector can only iterate at an entire vector

step, causing misalignment when loading ptr* and leading to

incorrect vector iterator for the idx* and val* arrays. To enable

efficient vectorized loading in AIE tiles, BCSX eliminates

the prefix 0, records the vector step in descriptor BSTEP,

and utilizes the BIAS descriptor to mark the relative starting

address of the idx* array, ensuring an aliquot length of ptr*

for efficient vectorized loading. In general, BCSX facilitates

MMs on AIEs with the features shown in TABLE I.

Memory Access Patterns with BCSX. Suppose the input

matrices are in square with non-zeros uniformly distributed

across rows and columns, and let NNZ denote the average

number of non-zeros per row. In row-wise production, as

illustrated in Fig. 3(a), to calculate row C(0,∗) of matrix C, the

non-zeros A(0,0) and A(0,2) in row A(0,∗) are loaded. For each

non-zero in row A(0,∗), the corressponding rows B(0,∗) and
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Fig. 3 Memory access patterns of two representative SpGEMM

algorithms: (a) Gustavson’s method; (b) Outer product. Gus-

tavson’s method involves six irregular memory accesses to

matrix B, while the outer product has only three accesses in a

fixed pattern with data locality.

B(2,∗) are loaded as multipliers. Similarly, while calculating

row C(1,∗), row B(0,∗) and B(3,∗) are loaded, resulting in worse

performance due to the random and discontinuous accesses

to the same row B(0,∗), preventing data preloading in AIE

kernels, since the indexing of those non-zeros in matrix A

is non-prior knowledge to AIEs. In contrast, the memory

access becomes regular by using BCSX, as illustrated in

Fig. 3(b), with each column A(∗,k) and corresponding row

B(k,∗) loaded simultaneously for calculating the output matrix

C. This allows non-zero A(0,k) and A(1,k) from A(∗,k) to

get multiplied by vector B(k,∗), creating fixed memory access

patterns to column A(∗,k) and row B(k,∗) due to the prior

knowledge of k that is considered in design, which enables

data preloading for columns in A and rows in B, thus opening

up new opportunities for performance improvement.

B. Multi-Level Tiling Scheme

We propose a multi-level tiling scheme that distributes the

computation workload of SpGEMM to PL and AIEs. The

key idea is to fully utilize the computation power of AIEs

to perform multiplication and addition operations at a fine-

grained level while taking advantage of the abundant memory

resources of PL to accomplish the merging of intermediate

results at a coarse-grained level. This tiling scheme can signif-

icantly reduce the reuse distance [18] of matrix elements from

a matrix scale to a block scale, thereby enhancing performance

by minimizing redundant data transfers. It is worth noting

that the proposed tiling process is performed hierarchically,

progressively breaking down the SpGEMM computation from

the PL level to the zone level, then to the group level, block

level, and finally, the kernel level, as shown in Fig. 4.

PL- and Zone-Level Tiling. Originally, matrix A with the

size of M × K and matrix B with the size of K × N are

stored in DDR in the BCSX format at a PL level. Matrix A

and B are then divided into PX × PZ and PZ × PY zones,

respectively, where each zone is transferred from DDR to on-

chip BRAMs of PL and then mapped to the AIEs. As shown

in Section III, the bandwidth of DDR is much smaller than

that of the PLIOs. Hence, we allocate ping-pong BRAMs to

store the zone data for both of the input matrices, as shown in

Fig. 5. Specifically, one BRAM acts as a ping buffer to receive

a zone from DDR, while the other functions as a pong buffer

to produce a zone for AIEs, allowing parallel communication

between DDR and PL, as well as between PL and AIEs.
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Fig. 4 Multi-Level Tiling Scheme across AIEs and PL

Group-Level Tiling. We further divide the zones into

smaller groups to enhance the parallel execution of AIEs. We

note that the size of a zone may exceed the capacity of the AIE

array. Therefore, the zones of matrix A and B are subdivided

into ZX
GX × ZK

GK and ZK
GK × ZZ

GZ groups, respectively, where

each group corresponds to a group-level region on AIEs. To

obtain the result Group(0,0) for zone C, all groups from A

and ZZ × Group(∗,0) from B must be sent to the AIEs.

Consequently, these groups from zone B need to be transferred

ZZ times to get multiplied with all the groups from zone A.

Hence, using the on-chip BRAMs to store all groups of zone

B, the entire ZZ times of accesses could be reused, avoiding

repetitively loading data from the DDR in the monolithic

methods. Furthermore, these groups of zone B need to get

transferred to AIEs ZZ times as well, which heavily increases

the communication burdens. Therefore, on the zone level, we

utilize circuit switches to broadcast the Group(∗,0) to group-

level tiles on AIEs simultaneously, achieving an ZZ-fold data

reuse ratio compared to non-titling scenes.

Block- and Kernel-Level Tiling. Matrices A and B at the

group level are further divided into GX ×GZ and GZ ×GY
blocks, respectively, where data accesses to A are column-wise

and to B are row-wise at the block level. Finally, the blocks

are then divided into kernel-level tiles, and the outer product

method is performed at this fine-grained level. To be more

specific, the outer product at the kernel level can be reduced

to the scalar-vector multiplications using elements in columns

from A and corresponding rows from B in a predetermined ex-

ecution order. This approach boosts the computation efficiency

of AIE cores by facilitating data reuse in a fixed pattern.

Again using Fig. 3(b) as an example, to complete the outer

product, matrix A follows a per-column data fetching pattern.

Both the two elements in the first column of A are fetched

and multiplied with the element in the first row of B (marked

as red triangles for A and circles for B, respectively). Since

the access pattern is determined beforehand, the first row of

B only needs to be fetched once, whereas the Gustavson’s

computation pattern shown in Fig. 3(a) necessitates fetching

the same row of B multiple times. For instance, the first row

of B should be multiplied with both the first element in the

two rows of A. However, this is a random way of fetching

the rows in B due to the inherent irregularity of the spatial

distribution of non-zeros from rows of A in Fig. 3(a), thus

impeding data reuse. In summary, our method subtly leverages
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both the fixed memory access pattern enabled by BCSX and

the outer product method of MM to maximize the data reuse

during the data fetching of matrices A and B at the kernel-

level.

C. MAC-Partition and Hybrid ADD-Partition

The MM of AM×K × BK×N generates K batches of

intermediate products (IP), which are sent to adders to be

merged into the final results. We design MAPs on AIEs to

perform detailed MMs using the outer product method with the

support of BCSX. Nonetheless, merging all IPs to standalone

adders within AIEs is impractical due to limited data memory

and communication bandwidth for non-neighboring AIEs. The

situation gets exacerbated when performing all the merges

with frequent data transfers via the PLIOs between AIEs and

PL. To address these issues, we propose the hybrid ADP to

perform partial merges at fine-grained levels within AIEs to

reduce the size of IP locally. The remaining merge operations

are completed on PL to leverage the large on-chip memory,

thereby further reducing the communication burden.

MAC-Partition on AIEs. The MUE at the kernel level

produces sparse vectors, composing at most K batches of IPs

with the size of M × N when both the column from A and

the corresponding row of B contain non-zeros. Once a batch

of IP is produced, it is transferred to the ACE through AXI-

Stream. The ACE accumulates the IPs to the data memory

on the local AIE tile to form the first-stage IPs. Since the

MUE and ACE are physically adjacent to AIEs, compared to

transferring IPs entirely to PL through PLIOs or accumulating

entirely on AIEs, the adjacent AXI-Swithes enable fewer

cycles for moving IPs to accumulators, significantly reducing

communications latency. Besides merging operations in the

accumulating stage, combining corresponding blocks for a

result matrix requires additional transfers and data memory as

well. Therefore, we propose the hybrid ADP to address this.

ADD-Partition on AIEs. As illustrated in Fig. 5, each

ADP is positioned vertically above or below a MAP, where

the MAP shares the same memory bank with the ADP to

achieve maximum bandwidth in AIEs. Inside each ADP, dense

accumulation tiles (DAT) are connected in cascade-stream to

combine rows of each matrix simultaneously. Specifically, the

first-stage IPs in the output from the first two MAPs are input

into the first DAT through a single cycle load via buffer-

based communication manner. Subsequent DATs receive one

IP stored in a shared memory bank from MAP and accept rows

for accumulation from the cascaded proceeding DATs, provid-

ing high communication bandwidth. The first DAT queries two

IPs for merging and utilizes an additional neighboring AIE tile

as shared memory storage, allowing parallel operation of these

chained DATs. Consequently, the pipeline of this IP merging

scheme at the kernel level is presented in Fig. 6. For each block

level in AIEs, the ADP merges BZ blocks with (BZ−1) DATs

and outputs one block as the second-stage IP to PL, reducing

the communication amount of IPs at a fine-grained level.

ADD-Partition on PL. On the PL side, ADPs are instan-

tiated in multiple Merging Units (MU). For each zone-level

second-stage IPs produced from AIEs, MUs in ADPs of PL

receive (ZX × ZZ × ZY )× (GZ ×GY ) block-level IPs for

merging, which operate sequentially with ping-pong buffers

as illustrated in Section IV-B. The MUs are chained in a

dataflow manner, with the header MU merging two IPs in

row order, simultaneously forwarding the sum of each row

to the next MU as an augend. This enables ADP on PL with

the initiation interval (II) = 1, which allows for a minimum

number of clock cycles between successive loop iterations,

facilitating continuous data processing without stalls. Under

the cooperation of ADPs across AIEs and PL, we achieve low

latency with reduced communication burdens in merging IPs.

V. EXPERIMENTS

We evaluate the performance, power consumption, energy

efficiency, and latency of VSpGEMM. To demonstrate the

effectiveness of VSpGEMM, we compare our results with the

SOTA work CHARM on Versal ACAP and the cuSPARSE

library on NVIDIA GPUs.

A. Experimental Setup

For experiments on the Versal ACAP, we use the VCK190

toolkit to evaluate VSpGEMM and CHARM. These experi-

ments are built with Vitis 2024.1, and results are collected

from an onboard testbench. We set the PL running at 250

MHz and the AIEs at 1.25 GHz, and use BEAM Tool [20]

and xbutil [21] to evaluate the onboard power of VCK190. For

comparisons with cuSPARSE, the experiments are conducted

on an NVIDIA RTX 4090 GPU with CUDA 12.6 and an Intel

Xeon Platinum 8375C CPU with 128 cores at 3.5 GHz for

the host-side program. We use nvidia-smi [22] to evaluate the

power of the RTX 4090. Additionally, iterations for all of these

experiments are configured for more than one minute to obtain

a stable performance at runtime.
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TABLE II Throughput of VSpGEMM

Datasets CHARM [13] VSpGEMM (Ours)

SpeedupBenchmark
(ID-Name) M × N NNZ AIE Tiles PLIOs

Throughput
(GOPS) AIE Tiles PLIOs

Throughput
(GOPS)

2397-football 115×115 663 144 64 26.53 58 12 46.64 1.76×
1945-TF11 216×236 1607 144 64 179.59 176 32 435.65 2.42×

1982-GL6 D 10 163×341 2053 144 64 147.28 264 44 568.01 3.85×
2209-Trefethen 500 500×500 4489 198 146 339.17 176 32 1204.39 3.55×
2210-Trefethen 700 700×700 6677 192 96 1219.91 264 44 2055.49 1.68×

TABLE III Latency, power and energy efficiency (EE) of VSpGEMM

Benchmark
(ID-Name)

cuSPARSE [19] CHARM VSpGEMM (Ours) EE. Gain

Latency
(ms)

Power
(W)

EE.
(GOPS/W)

Latency
(ms)

Power
(W)

EE.
(GOPS/W)

Latency
(ms)

Power
(W)

EE.
(GOPS/W)

V.S.
cuSPARSE

V.S.
CHARM

2397-football 39.21 89 0.08 0.36 22.28 1.19 0.21 15.45 3.02 37.75× 2.54×
1945-TF11 28.60 90 0.21 0.36 23.26 7.72 0.26 24.20 18.00 85.71× 2.33×

1982-GL6 D 10 24.81 89 1.50 0.36 22.41 6.57 0.26 28.19 20.15 13.45× 3.07×
2209-Trefethen 500 25.67 92 2.58 0.55 28.23 12.01 0.46 25.38 47.45 18.38× 3.95×
2210-Trefethen 700 25.91 95 5.61 0.67 31.08 39.25 0.64 28.64 71.77 12.79× 1.83×

We utilize datasets with sparse matrices from the SuiteS-

parse Matrix Collection [23], and we assume that matrices

are pre-stored in the BCSX format, similar to the work on

GPU [24]. The CHARM implementation was initially based

on Vitis 2021.1, where some AIE APIs are deprecated, and

the AIE clock operates at a maximum of 1.0 GHz, different

from Vitis 2024.1, which operates at 1.25 GHz. Therefore, we

port CHARM to Vitis 2024.1 to ensure a fair comparison.

B. Evaluation of Performance

In this experiment, we evaluate the performance of

VSpGEMM and compare our results with the SOTA GEMM

implementation on Versal, the CHARM [13] framework. The

AIE kernels in VSpGEMM are currently implemented using

the INT16 datatype, so we limit the values in datasets to

the range of 16-bit integer for both input and output while

maintaining the original spatial distribution of non-zeros.

VSpGEMM schedules the number of MAPs based on the

size of input matrices to efficiently utilize AIE tiles while

maintaining high communication efficiency within MAPs. In

current settings, the zone on AIEs performs SpGEMM with

two maximum matrix dimensions of 256 or 384 per iteration,

which are mapped to 176 or 264 AIE tiles respectively.

VSpGEMM determines the usage of AIE tiles according to

the input matrix size that is closest to the multiples of these

two maximum dimensions, ultimately achieving optimal tile

utilization. The experimental results are shown in TABLE II.

As can be seen, for smaller matrices, VSpGEMM utilizes

fewer AIE tiles because the dimensions of each level in tiling

are small, which can fit into one single MAP. As the problem

size increases, a large number of MAPs are mapped into

AIEs and a higher level of parallelism is achieved, resulting

in a performance boost. We can observe that VSpGEMM

consistently outperforms CHARM on different problem sizes,

achieving an average speedup of 2.65×.

C. Evaluation of Energy Efficiency

We investigate the latency, power, and energy efficiency

of VSpGEMM, with a comparison to cuSPARSE [19] and

CHARM [13]. Given that cuSPARSE does not support INT16

datatype, we set the datatype of cuSPARSE to FP32 to perform

the calculation. The latencies of VSpGEMM and CHARM

both increase as the matrix scale increases, while the latency

of cuSPARSE decreases due to the low utilization of SMs on

GPU at small matrix scales. For all problem sizes, VSpGEMM

achieves the lowest latency and outperforms the CHARM on

Versal and the cuSPARSE on GPU, which fully justifies the

capability of the Versal platform on SpGEMM acceleration.

The power consumption of VSpGEMM is primarily com-

posed of AIE cores, the PL domain, and the PS domain [25].

Among all the platforms, VSpGEMM achieves the lowest

power consumption of 15.45W on the problem size of 115×
115. Moreover, VSpGEMM demonstrates the highest energy

efficiency among all the problem sizes, with an average energy

efficiency gain of 33.62× and 2.74× compared to cuSPARSE

and CHARM, respectively. Therefore, the experimental results

show that VSpGEMM can achieve high performance and high

energy efficiency at the same time, which is an ideal solution

for real-world applications, especially on edge devices that

have a stringent requirement for energy efficiency.

VI. CONCLUSION

In this work, we design VSpGEMM, an accelerator frame-

work for SpGEMM on Versal ACAP. We introduce the BCSX

format, a unified compressed storage format for storing sparse

matrices in a block-wise row or column-major order, facil-

itating efficient memory access patterns with efficient data

preload. We also propose a multi-level scheme under BCSX

to enhance data reuse across AIEs and PL hierarchically.

Additionally, the hybrid ADD-partition method is developed to

reduce communication overhead for intermediate products. As

a result, our approach achieves an average speedup of 2.65×
compared to CHARM and a 33.62× energy efficiency gain

compared to cuSPARSE.
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