
HeteroSVD: Efficient SVD Accelerator on Versal ACAP with
Algorithm-Hardware Co-Design

Xinya Luan1, Zhe Lin2†, Kai Shi1, Jianwang Zhai1, and Kang Zhao1†,
1Beijing University of Posts and Telecommunications 2Sun Yat-sen University

{luanxinya, shikai, zhaijw, zhaokang}@bupt.edu.cn, linzh235@mail.sysu.edu.cn

Abstract—Singular value decomposition (SVD) is a matrix factorization
technique widely used in signal processing and recommendation systems,
etc. In general, the time complexity of SVD algorithms is cubic to
the problem size, making SVD algorithms difficult to meet stringent
performance requirements in real-time. However, existing FPGA and
GPU solutions fall short of jointly optimizing latency, throughput, and
power consumption. To settle this issue, this paper proposes HeteroSVD,
a heterogeneous reconfigurable accelerator for SVD computation on
the Versal ACAP platform. HeteroSVD introduces a system-level SVD
decomposition mechanism and proposes an algorithm-hardware co-design
method to optimize SVD ordering jointly and AI engine (AIE)-centric
dataflow and placement with Versal. Furthermore, in order to improve
the quality of results (QoR) and facilitate micro-architecture selection, we
introduce an automatic optimization framework that performs accurate
performance modeling and fast design space exploration. Experiment
results demonstrate that HeteroSVD reduces the latency by 1.98× over
existing FPGA accelerators and outperforms GPU solutions with an
improvement of up to 7.22× in latency, 1.77× in throughput, and 13.18×
in energy efficiency.

I. INTRODUCTION

In linear algebra, singular value decomposition (SVD) is a com-
monly used approach for identifying singular values and constructing
a set of singular vectors or matrices from a given matrix. It is
widely adopted in applications such as wireless communication [1]–
[3], recommendation system [4], [5], etc., where data approximation,
compression, and denoising are indispensable. Despite its importance
and popularity in data processing, SVD is highly computationally
intensive. For example, the Hestenes-Jacobi decomposition method,
one of the mainstream SVD algorithms, conducts orthogonalization
transformation, namely, multiple vector multiplications, for each pair
of column vectors, in a single iteration. This leads to N × (N −1)/2
rounds of vector multiplication computation in an iteration for an in-
put matrix with N columns. To make matters worse, SVD algorithms
usually demand multiple iterations until results finally converge.
The high computation cost of SVD makes efficient implementation
extremely difficult, especially under rigorous real-time requirements.

To boost the performance of real-time SVD processing, re-
searchers have presented SVD accelerator architectures based on
field-programmable gate array (FPGA) or graphics processing unit
(GPU) platforms. FPGAs [6]–[8] are featured with programmable
logic and wirings that can realize any boolean function via hardware
reconfiguration. As a result, using FPGAs as the substrate, researchers
can take advantage of a number of flexible logic blocks and wirings
to tailor the control and data paths of SVD implementation, fi-
nally achieving low latency per matrix transformation. However, the
scarcity of on-chip memory hinders FPGA solutions from achieving
high throughput through effective parallelism. Conversely, GPUs [9]–
[13] have a large number of well-constructed computation kernels
and this facilitates the simultaneous processing of a set of data.
Therefore, researchers investigate batch SVD implementation on GPU
and demonstrate higher throughput compared with FPGA design.

†Corresponding author.
‡Our method is open-source at https://github.com/zhaokang-lab/HeteroSVD.

Nevertheless, this is accompanied by high power consumption. Be-
sides this, GPU solutions incur high latency in computing SVD for
single and small-scale matrices since the computation kernels are
mostly underutilized in this case. In summary, the existing solutions
for efficient SVD implementation fail to jointly optimize latency,
throughput, and power consumption due to the high computational
intensity of SVD and the inherent limitations of the target platforms.

Recently, AMD/Xilinx has introduced the Versal ACAP architec-
ture, which integrates AI engines (AIEs), programmable logic (PL),
and processor systems (PS) to address the limitations of GPUs and
FPGAs. The AIEs are optimized for vector and matrix multiplication,
allowing for high performance and low power consumption. However,
due to the complexity of Versal ACAP, there are three key challenges
for efficient SVD acceleration on Versal ACAP. First, the problem
size of SVD often exceeds the computational power of a single
AIE kernel, necessitating careful partitioning of the input matrix for
effective processing. Second, as the usage of AIEs increases with the
growing design scale, the limited communication bandwidth between
AIEs and PL may incur a bottleneck. Lastly, the versatility of AIEs
and the flexibility of PL give rise to a vast design space, making it
non-trivial to identify the optimal configurations of micro-architecture
that can offer high performance and energy efficiency.

To address these challenges, in this work, we propose an accel-
eration paradigm of SVD on the heterogeneous computing platform
Versal ACAP, which is named HeteroSVD. HeteroSVD constructs
the hardware of SVD with a specific focus on the system-level
optimization through effectively harnessing the AIE and PL resources.
It presents the techniques of workload allocation, communication
optimization, and algorithm-hardware co-design. To go one step
further, HeteroSVD presents an automatic optimization framework to
take into account the effect of various micro-architecture parameters,
which helps to rapidly identify the optimal hardware solutions under
different problem sizes. The main contributions are as follows:

• We present HeteroSVD‡, a high-performance and scalable hard-
ware architecture of SVD on the Versal ACAP. To the best of
our knowledge, this is the first work that seeks to optimize SVD
on this novel heterogeneous computing platform.

• We propose a co-design methodology that jointly optimizes the
SVD ordering from an algorithm perspective and the AIE-centric
dataflow and placement from a hardware perspective, which
boosts the overall performance and energy efficiency.

• We introduce an automatic design optimization framework with
a performance analysis model and an efficient design space
exploration engine, which navigates the rapid tuning of micro-
architecture parameters and ultimately leads to a fast exploration
of optimal designs given different problem sizes.

II. BACKGROUND

A. Block Hestenes-Jacobi Algorithm for SVD

The SVD problem can be factorized as:

AAAm×n = UUUm×nΣΣΣn×nVVV
TTT
n×n, (1)

20
25

 6
2n

d
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

31
5-

03
04

-8
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

63
84

9.
20

25
.1

11
32

87
8

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

AIE 0

M
em

o
ry

AIE 0

M
em

o
ry

AIE 2

M
em

o
ry

AIE 2

M
em

o
ry

AIE 1

M
e

m
o

ry

AIE 1

M
e

m
o

ry

Non-neighboring access (DMA)

Neighboring access

AIE 3

M
em

o
ry

AIE 3

M
em

o
ry

AIE 0

M
em

o
ry

AIE 0

M
em

o
ry

Switch

AIE 1

M
em

o
ry

AIE 1

M
em

o
ry

AIE 2

M
em

o
ry

AIE 2

M
em

o
ry

Packet 1,2 Packet 1 Packet 2

(a) one-to-one communication (b) one-to-many communication

Switch

Switch

Stream access

Forwarding

AIE 0

M
e

m
o

ry

AIE 0

M
e

m
o

ry

Switch

AIE 1

M
e

m
o

ry

AIE 1

M
e

m
o

ry

AIE 2

M
em

o
ry

AIE 2

M
em

o
ry

Packet 1 Packet 1 Packet 1

Broadcasting

Fig. 1 Various AIE communication mechanisms.

where both U and V are unitary matrices and Σ is a diagonal matrix,
and the diagonal elements of Σ are called singular value of A. The
key steps of Hestenes-Jacobi [14] denoted as orthogonalization:

BBB = AVAVAV = UUUΣΣΣ,

VVV = JJJ1JJJ2JJJ3JJJ4 · · · .
(2)

where the rotation matrix [15] JJJ comprised of c and s is shown as:

[BBBi,BBBj] = [AAAi,AAAj] ·
[
c −s

s c

]
, where BBBT

i ·BBBj = 0, (3)

c =
1√

1 + t2
, and s = aT

i aj
tc

|aT
i aj |

, (4)

t =
sign(τ)

|τ |+
√
1 + τ2

, and τ =
aTj aj − aTi ai

2|aTi aj |
. (5)

After multiple orthogonalizations for all column pairs, the conver-
gence rate is less than the specified precision:

BBBT
i BBBj√

(BBBT
i BBBi)(BBBT

j BBBj)
< precision. (6)

Finally, normalization is performed to calculate Σ and U by:

ΣΣΣ =
√

BBBTTTBBB, UUU = BBB/ΣΣΣ. (7)

To solve the SVD of large matrices with limited resources, the
block Jacobi algorithm is proposed. It divides a large-scale matrix into
manageable sub-matrix blocks, enumerates block pairs, and further
orthogonalizes all column pairs in a specific sequence such as ring
[16] and round-robin [17].

B. Versal ACAP

Versal ACAP is a high-performance heterogeneous computation
architecture consisting of central processing units (CPUs), PL, and
AIEs, which are connected by a high-bandwidth network on chip
(NoC). Each AIE comprises an AI-oriented computation core, a tile
interconnect module (denoted as a switch), and a memory module
with four banks of 8KB. Additionally, there are multiple interfaces
called PLIO between the PL and AIEs, supporting a bandwidth of 24
GB/s from AIE to PL and 32 GB/s in the reverse direction.

Fig. 1 illustrates different mechanisms of data movement between
AIEs. Fig. 1(a) depicts one-to-one communication where all AIEs are
placed next to each other. The blue arrows indicate that the source AIE
can access the memory of the target AIE, because the computation
core and memory are adjacent, with no other computation cores or
memory blocking them in between, thus considering them neighbors.
In contrast, non-neighboring AIEs’ communication is supported by
the direct memory access (DMA) mechanism, which requires twice
the memory resources and has a lower data transmission rate. Fig. 1(b)
depicts two types of one-to-many communication mechanisms, in-
cluding statically broadcasting packets from one AIE to several
specific destinations and dynamically forwarding packets to different

Algorithm 1: SVD Algorithm in HeteroSVD.
Input: Am×n

Output: U ,Σ
1 convergence rate = 0;
2 while convergence rate > precision do
3 // AIE-PL communication
4 for each block pair(Au, Av) in [A1, A2, · · · , Ap] do
5 send Au, Av to orth-AIEs;
6 // AIE interconnection
7 for each column pair(Ai, Aj) in block pair(Au, Av) do
8 // AIE computation of orthogonalization

(orth-AIE)
9 calculate conv(Ai, Aj);

10 update conv(Au, Av);
11 calculate t, τ , c, s;
12 update(Ai, Aj);
13 end
14 receive Au, Av , conv(Au, Av) from orth-AIEs;
15 update convergence rate;
16 end
17 end
18 // AIE-PL communication
19 for each block(Ai) in [A1, A2, · · · , Ap] do
20 send Ai to norm-AIEs;
21 for each column(Aj) in block(Ai) do
22 // AIE computation of normalization (norm-AIE)
23 calculate Σj , Uj ;
24 end
25 receive Σi, Ui from norm-AIEs;
26 end

Orth-AIEsOrth-AIEsNorm-AIEsNorm-AIEs

 Write
U

Read block
 Write
Sigma

Block Send Block Receive

AIEAIE AIEAIE AIEAIE AIEAIE AIEsAIEs AIEsAIEs AIEsAIEs AIEsAIEs

convergencesignal

signalsignal

Fig. 2 HeteroSVD architecture.

destinations according to the packet header. Both utilize stream access
for communication, which has a speed comparable to that of DMA.

III. HETEROSVD ACCELERATOR DESIGN

A. Overview

SVD Decomposition. Algorithm 1 provides the SVD algorithm
that is restructured for HeteroSVD. The key idea behind Algorithm 1
is to split a large-scale matrix into smaller blocks, each of which is
further divided into a set of column vectors. Subsequently, column
pairs are constructed by grouping any two column vectors from two
blocks, which are then sent to the AIE array for result computation.
The AIEs are responsible for performing two core types of operations
on each pair of column vectors, namely, orthogonalization (lines 7-13)
and normalization (lines 21-24).

Overall Architecture. HeteroSVD orchestrates PL and AIE to
facilitate the system-level hardware optimization, as depicted in
Fig. 2. To start with, the data arrangement module reads the holistic
matrix Am×n with the size of m × n from DDR and splits Am×n

into smaller ones with the size of m × k. Subsequently, it reorders
the incoming data from DDR or the receiver FIFOs in a round-robin
manner and passes block pairs to two sender FIFOs respectively. Next,
the sender module leverages the dynamic forwarding mechanism and
packs each column into packets with headers to ensure correct routing
to the respective AIEs. After AIEs finish processing, the receiver

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

SVD
Ordering

AIE
Dataflow

(c) Naive dataflow (d) Optimized dataflow

(1,2) 1 2 (3,4) 3 4 (5,6) 5 6

(1,5) 1 5 (3,6) 3 6 (2,4) 2 4

(1,4)1 4 (3,5)3 5 (6,2)6 2

(1,2) (3,4) (5,6)

(2,4) 1 4 (1,5) 3 5 (3,6) 6 2

(1,4)1 2 (3,5)3 4 (6,2)5 6

Iteration

Execute in parallel

(1, 2) (3, 4) (5, 6)

(2, 4) (1, 5) (3, 6)

(1, 4) (3, 5) (6, 2)

(2, 5) (1, 3) (6, 4)

(b) Shifting ring ordering

Iteration

Execute in parallel

(1, 2) (3, 4) (5, 6)

(1, 5) (3, 6) (2, 4)

(1, 4) (3, 5) (6, 2)

(1, 3) (6, 4) (2, 5)

(a) Traditional ring ordering

(1, 6) (4, 5) (2, 3) (4, 5) (2, 3) (1, 6)

Shifting

Row-0(even)

Row-1(odd)

Row-2(even)

Row-3(odd)

Row-4(even)

0

0

1

1

2

DMANeighboring access DMANeighboring access

Fig. 3 The comparison of ordering and dataflow between traditional
ring ordering and HeteroSVD method.

module reunites packets from AIEs, sorts them into columns, stores
them in the corresponding receiver FIFOs, and then sends the deduced
convergence rate to the system module. If the convergence rate is less
than the user-specified precision, the system module will terminate
the orthogonalization stage and proceed into the normalization stage.
Finally, the data arrangement module stores the results of Σ and U
into DDR and releases a signal of completion.

Note that naive SVD computation may lead to a complicated
data transmission scenario between AIEs, which can severely impede
communication efficiency. In light of this problem, we propose an
algorithm-hardware co-design strategy to jointly optimize both the
SVD ordering from an algorithm perspective and the AIE-centric
dataflow from a hardware perspective. Finally, we present the method
of AIE placement that instantiates the SVD on Versal ACAP.

B. Algorithm-Hardware Co-Design

SVD ordering refers to the practice of determining the processing
order of orthogonalizing different column pairs. Unfortunately, the
traditional SVD ordering, such as the widely used ring ordering [16],
does not fit in well with AIE’s inherent characteristics. Specifically,
the AIEs are arranged in rows in the AIE array, with neighboring rows
having different topologies: in even rows, each computation core is
located on the left side of its internal memory, whereas in odd rows,
the relative position of each computation core and its memory gets
reversed. The traditional ordering of SVD algorithms maintains a
monolithic data movement pattern across different iterations, which
is inconsistent with the AIE alignment in different rows. This discrep-
ancy makes it necessary to use a large number of DMA transmissions,
a type of less efficient data communication between non-neighboring
AIEs that leads to reduced transmission speed and increased memory
usage, as discussed in Section II-B. Fig. 3 (a) and (c) illustrate
this issue with matrix Am×6 as an example, where the number in
parentheses denotes the column index, the red arrow indicates DMA
transmission and the blue represents neighboring access.

HeteroSVD proposes to co-optimize the SVD algorithm and the
Versal AIE array, which can significantly reduce the number of DMA
transmissions from 2k(k− 1) to 2(k− 1) for a matrix with the size
of m× 2k, as shown in Fig. 3 (b) and (d). Specifically, we propose
the shifting ring ordering method to augment the SVD algorithm, and
the AIE dataflow that reduces communication and memory usage.

Shifting Ring Ordering. To accommodate the AIE array’s asym-
metric characteristics, we propose the shifting ring ordering mecha-

(a) Naive Memory Location (b) Ouput Memory Relocation

Row-0
(even)

Row-1
(odd)

Row-2
(even)

(3,4) 4(3,4) 4(3,4) 4

(1,4)1 4 (1,4)1 4 (3,5)(3,5)

(2,4)(2,4)(2,4) (1,5) 1(1,5) 1(1,5) 1

(3,4)(3,4)(3,4)

(1,4)(1,4) (3,5)4 (3,5)4

(1,5)(1,5)(1,5)

DMANeighboring access DMANeighboring access

data copy

data copy

output

input

output

input
(2,4)(2,4) 1(2,4) 1

Fig. 4 Dataflow Comparison between different memory location
strategies.

DMA-layer

AIE Array boundary

(1,2)

M
EM (3,4)

M
EM

(1,3)

M
EM (4,2)

M
EM2

M
EM

(1,4)

M
EM

(2,3)

M
EM (1,4)

M
EM

AIE

M
EM

AIE

M
EM AIE

M
EM

idle-AIE

PLIO Interface

(1,3)

M
EM (4,2)

M
EM (2,3)

M
EM

AIE

M
EM

AIE

M
EM

AIE

M
EM

norm-AIE

AIE

M
EM

mem-AIE

Stream accessDMANeighboring access

AIE

M
EM

2

M
EM

AIE

M
EM

DMA-layer

1

M
EM

mem-layer

orth-layer 2

orth-layer 1

orth-layer 0

mem-layer

orth-AIE

Fig. 5 AIE placement with three types of AIE.

nism for SVD. The main idea is to dynamically change the pattern
of data movements in an effort to align with the topology of each
AIE row, as depicted in Fig. 3 (b). For row-i, we shift the column
pairs to the right by a step size of ⌊ i

2
⌋ in a cyclic manner. For

instance, in Fig. 3 (b), all the column pairs in row-2 are shifted by
one step cyclically: the right-most column pair (2,4) becomes the
left-most, the left-most column pair (1,5) shifts to the middle, and
so on. By ordering in this way, the original straight and leftward
movements from odd rows to even rows are respectively transformed
into rightward and straight movements, while the movements from
even rows to odd rows remain unchanged. This method synchronizes
the data movement with the topologies of the AIE array.

AIE-Centric Dataflow. To optimize the inter-AIE communication,
we relocate the position of output storage to convert the non-
neighboring DMA transmission into direct neighboring access. As
illustrated in Fig. 4 (a), using the naive memory configuration, each
AIE’s output is stored in its own memory, necessitating DMA to
copy the data due to the lack of a direct interface between the source
AIE and target AIE. This means that the orthogonalization operation
requires a memory block twice the size of the result to store it, and an
expensive DMA communication is engaged as well. To address this
issue, we subtly assign each AIE’s output to the subsequent AIE’s
memory in the next row as shown in Fig. 4 (b). This allows the target
AIE to communicate with the source AIE through two neighboring
accesses via the intermediate AIE memory. Untimately, except for
the long-distance communication between the first and the last AIE
columns, all data movements from the shifting ring ordering can be
achieved with neighboring direct access, as shown in Fig. 3 (d).

C. AIE Placement

AIE placement means the instantiation of AIEs and the corre-
sponding interconnect to implement the SVD algorithm on hardware.
However, this problem is challenging. The complete SVD algorithm
comprises two phases: orthogonalization and normalization. It is
essential to wisely assign AIEs to complete both phases. In particular,
the shifting ring ordering for orthogonalizing matrix Am×2k requires
an array of (2k−1)×k AIEs, which is incompatible with the 8×50

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

size of the AIE array on our target board. To this end, we propose
an AIE placement strategy, and Fig. 5 illustrate it with matrix Am×4

as an example.
We define three types of AIE, namely orth-AIE, norm-AIE, and

mem-AIE, which are designed for orthogonalization, normalization,
and the storage of intermediate data, respectively. For the orthog-
onalization stage, we partition the shifting ring ordering of size of
(2k− 1)×k into 2k− 1 orth-layers, each consisting of k orth-AIEs.
Then we place the 2k−1 orth-layers in a row-wise manner. Notably,
at the boundary of the AIE array, namely the first row and the last row,
we place a mem-layer instead of an orth-layer as the maximum row
limitation of the AIE array prevents a subsequent row from storing the
current layer’s output. Consequently, we choose another k columns
to continue placing the remaining orth-layers, albeit at the expense
of some unavoidable DMA transmissions. Moreover, we assign the
columns on both sides of the orth-layers as DMA-layers, allocating
mem-AIEs to store the copied data due to the DMA mechanism,
This is necessary because the orth-AIEs with DMA have already
stored data from the previous orth-layers and lack sufficient memory
to accommodate the additional copied data. For the normalization
stage, we allocate the norm-AIE within the remaining idle-AIE.

We further establish a dynamic forwarding rule to ensure that the
block pair from PL is correctly routed to the placed AIEs. Specifically,
we designate that odd and even columns are sourced from different
blocks within the block pair, utilizing four PLIOs for their respective
transmission. Different columns from a single block are routed to
different AIEs as shown in Fig. 5. For the norm-AIE, we only use two
PLIOs, as the two blocks in the block pair are transmitted sequentially
between the PL and AIE.

IV. AUTOMATIC DESIGN OPTIMIZATION FRAMEWORK

In this section, we first describe the micro-architecture parameters
derived from two levels of parallelism. After that, we discuss our
performance modeling and design space exploration (DSE) methods.

A. Micro-Architecture Parameters

HeteroSVD has two levels of parallelism that expand its design
space, as shown in Fig. 6. The first parallelism is AIE-level par-
allelism (denoted as Peng), which determines the number of AIEs
used in parallel to execute the SVD computation for a single task.
The second parallelism is task-level parallelism (denoted as Ptask),
which represents the number of tasks processed simultaneously in
the computing system. These two parallelism factors, together with
the given operating frequency of PL, determine the system-level
performance and guide the selection of parameters in the HeteroSVD
design, making them first-order micro-architecture parameters, as
listed in TABLE I. Additionally, second-order micro-architecture
parameters include the number of PLIOs and the counts of AIEs
designated as orth-AIE, norm-AIE, and mem-AIE.

In summary, by specifying Peng , Ptask, and PL frequency, we
can determine the architecture of HeteroSVD. However, searching
for the optimal and feasible HeteroSVD architecture by enumerating
all possible micro-architecture parameters requires the full invocation
of the EDA front-end, back-end, and cycle-accurate simulation flow,
which is extremely time-consuming. For instance, running a single
design point for an SVD of a 128×128 matrix would take more than
seven hours. Considering a design space of (Peng , Ptask) that leads
to 286 design points, the cost of searching for optimal architecture is
unaffordable. Therefore, HeteroSVD proposes an automation design
approach with a performance model and a design space exploration
flow to construct the optimal HeteroSVD structure of a given problem
size within minutes.

TABLE I HeteroSVD architecture parameters at different hierarchies.

Hierarchy Parameter Range or Value

First order
Peng n ∈ [1, 11]
Ptask k ∈ [1, 26]

PL frequency (MHz) -

Second order

the number of orth-AIE n(2n − 1)k
the number of norm-AIE nk
the number of mem-AIE -

the number of PLIO 6k

PL Module 0

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM AIE

M
EM AIE

M
EM

AIE
M

EM AIE
M

EM

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM

AIE

M
EM AIE

M
EM

AIE Array

Task 0Task 0 Task NTask N

PL Module N

Engine parallelism Engine parallelism

Task parallelism

Fig. 6 Engine parallelism and task parallelism.

B. Performance Model

To efficiently evaluate the performance with different AIE-level
and task-level parallelisms, we first present a performance model to
estimate the latency and throughput of the overall computing system.
The complete pipeline of the orthogonalization is shown in Fig. 7.
This pipeline can be further decomposed into data sending (Tx) from
PL to AIE, data receiving (Rx) of PL from AIE, and execution of
orthogonalization (orth-AIEs). And since orth-AIEs have two inputs
and output, we use left(L) and right(R) to distinguish them.

The execution time of Tx and Rx is determined by PL frequency
and PL bandwidth:

tTx,Rx =
databits

bandwidth · frequency
, (8)

and the AIE time is estimated by the AIE simulator in advance.
Besides, there are three main types of latency.

AIE-wait latency (tAIEwait) arises from the imbalance between
the execution time of AIE and the time taken for data transmission:

tAIEwait = max(torth − Peng · tTx, 0). (9)

Specifically, when multiple packets are transmitted serially to differ-
ent AIEs through a single PLIO, the incoming data must wait for the
completion of AIE’s last execution.

Algorithm latency (talgo) results from the data dependency between
the second Rx-R and the first Tx-R in the round-robin algorithm:

talgo = tTx + tAIEwait. (10)

The lack of sending data causes data-wait latency (tdatawait):

tdatawait = max(−(num− 1) · (t2 + tTx)

+tAIEs + tRx + talgo, 0),
(11)

where num and tAIEs represent the number of block data pairs and
the total AIEs time between Tx and Rx.

Beyond these latencies, there is also latency caused by HLS
(thls) and DDR (tDDR). HLS [18] incurs additional cycles when
switching between loops, thus, thls can be calculated based on the
loop structure in the code. The inability to load block pairs from DDR
simultaneously results in significant latency during the first iteration:

tDDR = num · tTx. (12)

Then we can calculate the time required for one iteration:

tblocks = num · (tTx + tAIEwait) + talgo + tdatawait,

titer = (num− 1) · tblocks +AIEtotal + tRx.
(13)

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

Timeline

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Data wait
Dependency

Algorithm
Dependency

Rx-R

Rx-R

Tx-L Tx-R Block data sending orth-AIEs
Execution of

orthogonalization
Algorithm latency

Rx-L Rx-R Block data receiving AIE wait latency

Data wait latency

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Tx-L

Tx-R

orth-AIEs
orth-AIEs

Rx-L

Rx-R

Data wait
Dependency

Algorithm
Dependency

Rx-R

Rx-R

Tx-L Tx-R Block data sending orth-AIEs
Execution of

orthogonalization
Algorithm latency

Rx-L Rx-R Block data receiving AIE wait latency

Data wait latency

Fig. 7 HeteroSVD pipeline model at orthogonalization stage

Step2-Performance EstimationStep2-Performance Estimation

Given
Frequency

Final
Configuration

Performance
Model

Step1-Parameters DeterminationStep1-Parameters Determination

AI Engine
Parallelism

Task
Parallelism

Placement
Strategy

Fully Utilizing
Resource

No

Yes

Preference

Input Output

Input

Input

Output

Fig. 8 DSE flow with two stages.

Norm-AIE’s pipeline resembles orth-AIE’s but with single in-
put/output and no algorithm latency. We define the normalization time
as tnorm. The task time can be computed by summing the execution
times of orthogonalization, normalization, and additional latency. The
system time can then be derived using:

ttask = tDDR + ITER · titer + tnorm + thls,

tsys = ⌈
numtask

Ptask
⌉ · ttask,

(14)

where ITER represents the specified iterations and numtask repre-
sents the number of tasks.

C. Design Space Exploration (DSE)

Problem Formulation. In general, the goal of our architecture
optimization framework is to increase the performance of the SVD
computing system. Specifically, given the size of the matrix (M×N)
and batch size (B), we need to properly select the first-order param-
eters listed in TABLE I, i.e., the parallelism factor of AIEs (Peng)
and tasks (Ptask), and the practical frequency (Freq) of PL, while
keeping all types of resources, including AIE kernel, PLIO, BRAM
and URAM, under their budgets. To this end, we formally define our
problem of design space exploration as follows:

min runtime(Peng , Ptask, F req),

s.t. Resourcei(Peng , Ptask),≤ Ci

i ∈ {AIE, PLIO,BRAM,URAM}.
(15)

DSE Flow. Fig. 8 illustrates the design exploration flow to
search for the optimal HeteroSVD architecture. In the first stage,
we enumerate the engine parallelism and maximize task paral-
lelism by fully utilizing resource according to our placement strat-
egy. Equation (16) summarized all constraints Ci, where i ∈
{AIE,PLIO,BRAM,URAM}, represent the number of hard-
ware resource limits. The actual usage of AIE resource, numorth,
numnorm, nummem, and numPLIO , can be determined after place-
ment while the resource usage of PL memory, including numBRAM

and numURAM can be estimated by the array size of PL design. In
the second stage, with engine parallelism, task parallelism, and the
user-specified frequency as input, we utilize our performance model
to estimate the overall computing system’s performance. Furthermore,

We determine the optimal HeteroSVD architecture based on the
demand of latency or throughput.

numorth + numnorm + nummem ≤ CAIE ,

numPLIO ≤ CPLIO,

numBRAM ≤ CBRAM ,

numURAM ≤ CURAM .

(16)

V. EXPERIMENT RESULTS

A. Experimental Setup

Our experiments are conducted on AMD/Xilinx Versal AI Core
Series VCK190 [19] evaluation board. We use the Vitis 2023.2 toolkit
to build up the whole HeteroSVD acceleration system. The AIEs
operate at 1.25 GHz, while the frequency of the PL design depends
on the specific system configurations. We use the AMD BEAM tool
[20], to measure the exact power of the system while running on the
VCK190 board. We compare our SVD acceleration system with the
SOTA SVD accelerators implemented on AMD/Xilinx XC7V690T
FPGA and GeForce RTX 3090 GPU.

B. Performance and Energy Efficiency

We compare HeteroSVD, with the state-of-the-art high-
performance hardware implementations on FPGA [6] and GPU
[11], both of which offer better latency or throughput compared
to other implementations on the same platform. To enable a fair
comparison, we perform six iterations per matrix and configure the
FPGA accelerator to its maximum task parallelism at an achievable
peak frequency of 200 MHz. Generally speaking, the GPUs
perform better with large-scale data, while the FPGAs are featured
with low-latency data processing. TABLE II presents the latency
comparison and resource utilization between HeteroSVD and FPGA.
The experimental results show that the HeteroSVD solution supports
more flexible architecture and significantly outperforms the FPGA
solution regarding latency in all matrix sizes, achieving 1.27× –
1.98× speedup over FPGA. Meanwhile, HeteroSVD consumes fewer
computational resources than FPGA, indicating that HeteroSVD has
greater potential for parallelism in handling multiple tasks.

Furthermore, we evaluate the latency, throughput, and energy
efficiency for batch data processing of SVD between HeteroSVD
and GPU as listed in TABLE III. We obtain the optimal micro-
architecture configuration from HeteroSVD’s DSE flow. In addition,
we perform multiple iterations of SVD until the results converge at
a rate of 10−6 for both HeteroSVD and GPU solution. HeteroSVD
achieves 1.15× – 7.22× latency speedup over GPU for small matrix.
Regarding throughput, HeteroSVD shows up to 1.77× speedup with
a small matrix size. However, as the matrix size increases, the GPU
solution outperforms our HeteroSVD solution in throughput. Fig. 9
illustrates the underlying mechanism. As the design size increases,
the GPU solution exhibits higher utilization of its computation cores
and memory, significantly boosting its performance. In contrast, due
to limitations in PL memory, HeteroSVD experiences reduced task
parallelism, leading to lower overall utilization. Moreover, larger
design sizes increase the complexity of the PL, which reduces the
maximum achievable frequency and further diminishes HeteroSVD’s
latency and throughput. Therefore, with adequate RAM resources and
optimized operating frequency, we believe that HeteroSVD has the
potential to outperform GPU solutions with similar core utilization.

As for energy efficiency, HeteroSVD demonstrates 4.36× – 13.18×
improvement over GPU solutions. In summary, the tremendous gains
justify that HeteroSVD is a highly competitive alternative to both
FPGA and GPU in achieving high-performance yet energy-efficient
SVD accelerators.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

TABLE II Latency comparison and resource utilization between HeteroSVD and FPGA.

Matrix Size FPGA [6] HeteroSVD HeteroSVD

Latency(s) LUT BRAM DSP Latency(s) LUT URAM AIE Speedup

128×128 0.0014

212K (30.6%) 519.5 (31.4%) 1602(44.5%)

0.0011 15.1K(1.68%) 4(0.86%)

128(32%)

1.27×
256×256 0.0113 0.0057 15.2K (1.69%) 20 (4.32%) 1.98×
512×512 0.0829 0.0435 15.5K (1.72%) 64 (13.82%) 1.90×

1024×1024 0.6119 0.3415 15.7K (1.75%) 244 (52.70%) 1.79×

TABLE III Latency, throughput and energy efficiency comparison between HeteroSVD and GPU.

GPU [11] (270W) HeteroSVD (<39W) HeteroSVD vs GPU

Matrix Size Latency Throughput Energy Efficiency Latency Throughput Energy Efficiency Latency Throughput EE
(s) (Tasks/s) (Tasks/s/Watt) (s) (Tasks/s) (Tasks/s/Watt) Speedup Gain

128×128 0.0166 1351.35 5.005 0.0023 2389.69 65.940 7.22× 1.77× 13.18×
256×256 0.0429 217.39 0.805 0.0130 239.48 6.251 3.30× 1.10× 7.76×
512×512 0.1237 27.55 0.102 0.1076 24.42 0.663 1.15× 0.89× 6.50×

1024×1024 0.6857 3.52 0.013 0.7937 1.27 0.057 0.86× 0.36× 4.36×

128 256 512 1024
0

50

100

Design Size

C
or

e
U

til
iz

at
io

n(
%

)

GPU Core HeteroSVD Core

0

50

100

M
em

or
y

U
til

iz
at

io
n(

%
)

GPU Memory HeteroSVD Memory

128 256 512 1024
0

1,000

2,000

Design Size

T
hr

ou
gh

pu
t(

ta
sk

/s
)

GPU Throughput AIE Throughput

Fig. 9 The throughput and utilization of core and memory comparison
with different design sizes between GPU and HeteroSVD

TABLE IV The processing time (ms) of SVD single iteration from
the performance model and on-board measurement under a frequency
of 208.3 MHz.

Matrix Size Peng On-board Meas. Perf. Model Error

128×128
2

0.993 1.022 2.92%
256×256 6.151 6.338 3.03%
512×512 43.229 42.020 2.80%

128×128
4

0.395 0.391 1.03%
256×256 2.853 2.806 1.66%
512×512 21.584 21.265 1.48%

128×128
8

0.214 0.219 2.57%
256×256 1.475 1.476 0.05%
512×512 10.965 10.903 0.56%

TABLE V The processing time (ms) of SVD with one iteration from
the performance model and on-board measurement under various
application scenarios.

Matrix Size Batch Freq.(MHz) Peng Ptask On-board Meas. Perf. Model Error

128×128 1 450 8 1 0.357 0.384 7.52%
256×256 1 420 8 1 1.202 1.120 6.82%
512×512 1 350 8 1 7.815 7.510 3.90%

1024×1024 1 310 8 1 58.885 58.255 1.02%
128×128 100 330 4 9 6.099 6.412 5.12%
256×256 100 310 4 9 27.836 26.623 4.36%
512×512 100 310 4 7 238.002 224.301 5.76%

1024×1024 100 310 8 1 5872.181 5878.970 0.12%

C. Effectiveness of DSE

Accuracy of Performance Model. The accuracy of the per-
formance model is key to developing a high-quality design space
exploration approach. Therefore, in this experiment, we first evaluate
the effectiveness of our performance model. We apply different factors
of engine parallelism and the input matrix size and examine the
processing time of HeteroSVD in terms of a single iteration. The
frequency of the PL side is fixed at 208.3 MHz. TABLE IV shows
the results of the HeteroSVD performance model and the on-board
measurement. We can observe that the maximum error of our model
is 3.03% and the average error is 1.78%, which shows the efficacy
of our performance model in the evaluation of latency.

To further validate the generalization ability of the performance
model across different application scenarios, we use the HeteroSVD
DSE approach to identify the optimal configuration with minimum

TABLE VI Latency(ms), throughput(task/s) and power(W) compari-
son between different design points. The matrix size is 256×256 and
the PL frequency is reported in 208.3MHz

Peng Ptask AIE URAM Latency Throughput Power

2 26 293(73.25%) 416(89.85%) 35.689 707.501 44.16
4 9 357(89.25%) 144(31.10%) 19.303 508.436 34.63
6 4 366(91.50%) 120(25.92%) 13.117 306.876 30.79
8 2 322(80.50%) 32(6.91%) 9.247 219.257 26.06

execution time. Then, we get the latency of processing a single matrix
and the throughput of processing 100 matrices from both the model
and on-board measurement. As shown in TABLE V, our performance
model demonstrates a maximum error of 7.52% and an average
error of 4.33%. This highly accurate performance model ensures the
effectiveness of our DSE flow with design point enumeration.

Discussion on DSE Results. TABLE VI evaluates how micro-
architecture parameters influence latency, throughput, and power
consumption of SVD implementation, with each design point exe-
cuting six iterations. Increasing Peng allows for more AIEs to be
allocated to a single SVD, effectively reducing latency. However, a
design point with high Peng is not suitable for scenarios with strict
throughput requirements, as it restricts task parallelism. Conversely,
higher task parallelism (Ptask) improves throughput but increases
URAM usage, leading to significant power consumption. In summary,
we favor lower Peng and higher Ptask for high throughput, while the
opposite configuration is preferable for minimizing latency. Moreover,
a comprehensive consideration of micro-architecture parameters is
essential for effectively managing power consumption.

VI. CONCLUSION

In this paper, we propose HeteroSVD, an optimized hardware
accelerator of block-Jacobi SVD based on the novel heterogeneous
computing platform, Versal ACAP. For HeteroSVD accelerator de-
sign, we decompose the computation of SVD and propose the
algorithm-hardware co-design for SVD ordering, AIE dataflow, and
AIE placement. To further optimize the design with a set of micro-
architecture parameters, we introduce a design space exploration flow
to expedite the search for the best hardware solutions at different
problem sizes.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program of
China (2022YFB2901100), the National Natural Science Foundation
of China (No. 62404257, 62404021), the Beijing Natural Science
Foundation (No. 4244107, QY24216, QY24204), and the Guangdong
Basic and Applied Basic Research Foundation (2023A1515110769).

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Löfgren, S. Mehmood, N. Khan, B. Masood, M. I. Z. Awan, I. Khan,
N. A. Chisty, and P. Nilsson, “Hardware implementation of an SVD
based MIMO OFDM channel estimator,” in 2009 NORCHIP, 2009, pp.
1–4.

[2] M. V. Athi, S. R. Zekavat, and A. A. Struthers, “Real-Time Signal
Processing of Massive Sensor Arrays via a Parallel Fast Converging
SVD Algorithm: Latency, Throughput, and Resource Analysis,” IEEE
Sensors Journal, vol. 16, no. 8, pp. 2519–2526, 2016.

[3] G. Lebrun, J. Gao, and M. Faulkner, “MIMO transmission over a time-
varying channel using SVD,” IEEE Transactions on Wireless Communi-
cations, vol. 4, no. 2, pp. 757–764, 2005.

[4] W. Wu, L. Zhao, Q. Wu, X. Wang, T. Tian, and X. Jin, “An SSD-
Based Accelerator for Singular Value Decomposition Recommendation
Algorithm on Edge,” in IEEE High Performance Extreme Computing
Conference (HPEC), 2022, pp. 1–5.

[5] X. Guan, C.-T. Li, and Y. Guan, “Matrix factorization with rating
completion: An enhanced SVD model for collaborative filtering recom-
mender systems,” IEEE Access, vol. 5, pp. 27 668–27 678, 2017.

[6] T. Hu, X. Li, X. Yu, S. Ren, L. Yan, X. Bai, Z. Xu, and S. Zhu, “A
Novel Fully Hardware-Implemented SVD Solver Based on Ultra-Parallel
BCV Jacobi Algorithm,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 12, pp. 5114–5118, 2022.

[7] X. Wang and J. Zambreno, “An FPGA Implementation of the Hestenes-
Jacobi Algorithm for Singular Value Decomposition,” in IEEE Interna-
tional Parallel & Distributed Processing Symposium Workshops, 2014,
pp. 220–227.

[8] Y. Wang, J.-J. Lee, Y. Ding, and P. Li, “A Scalable FPGA Engine for
Parallel Acceleration of Singular Value Decomposition,” in 2020 21st
International Symposium on Quality Electronic Design (ISQED), 2020,
pp. 370–376.

[9] C. Toolkit, Cuda toolkit documentation, 2018. [Online]. Available:
http://docs.nvidia.com/cuda/index.html

[10] R. Huang, T. Yu, S. Liu, X. Zhang, and Y. Zhao, “A Batched Jacobi SVD
Algorithm on GPUs and Its Application to Quantum Lattice Systems,”
in Parallel and Distributed Computing, Applications and Technologies,
H. Shen, Y. Sang, Y. Zhang, N. Xiao, H. R. Arabnia, G. Fox, A. Gupta,
and M. Malek, Eds., 2022, pp. 69–80.

[11] J. Xiao, Y. Pang, Q. Xue, C. Shui, K. Meng, H. Ma, M. Li, X. Zhang,
and G. Tan, “W-Cycle SVD: A Multilevel Algorithm for Batched SVD
on GPUs,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2022, pp. 1–16.

[12] S. Lahabar and P. Narayanan, “Singular value decomposition on GPU us-
ing CUDA,” in IEEE international symposium on parallel & distributed
processing, 2009, pp. 1–10.

[13] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes, “Batched QR
and SVD algorithms on GPUs with applications in hierarchical matrix
compression,” Parallel Computing, vol. 74, pp. 19–33, 2018.

[14] M. R. Hestenes, “Inversion of Matrices by Biorthogonalization and
Related Results,” Journal of the Society for Industrial and Applied
Mathematics, vol. 6, no. 1, pp. 51–90, 1958.

[15] N. L. Bihan and S. J. Sangwine, “Computing the SVD of a quaternion
matrix,” 2006. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18661147

[16] “A Parallel Ring Ordering Algorithm for Efficient One-Sided Jacobi
SVD Computations,” Journal of Parallel and Distributed Computing,
vol. 42, no. 1, pp. 1–10, 1997.

[17] R. P. Brent and F. T. Luk, “The Solution of Singular-Value and Sym-
metric Eigenvalue Problems on Multiprocessor Arrays,” SIAM Journal
on Scientific and Statistical Computing, vol. 6, no. 1, pp. 69–84, 1985.

[18] AMD Vitis High-Level Synthesis User Guide (UG1399). [Online].
Available: https://docs.amd.com/r/en-US/ug1399-vitis-hls/Introduction

[19] AMD VCK190 board. [Online]. Available: https://china.xilinx.com/
products/boards-and-kits/vck190.html

[20] AMD BEAM Tool for VCK190 Evaluation Kit.
[Online]. Available: https://xilinx-wiki.atlassian.net/wiki/spaces/
A/pages/2549186622/Power+Management+-+Getting+Started#
Tools-to-Estimate-and-Measure-Power

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2025 at 07:20:36 UTC from IEEE Xplore. Restrictions apply.

