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Abstract—With the continued scaling of integrated circuits
(ICs), IR drop analysis for on-chip power grids (PGs) is cru-
cial but increasingly computationally demanding. Traditional
numerical methods deliver high accuracy but are prohibitively
time-intensive, while various machine learning (ML) methods
have been introduced to alleviate these computational burdens.
However, most CNN-based methods ignore the fine structure
and topological information of PGs, and face interpretability
or scalability issues. In this work, we propose a novel graph-
based framework, IRGNN, leveraging the PG topology with
the integration of numerical solutions and point clouds. Our
framework applies a numerical solver, AMG-PCG, to generate
rough numerical solutions as a reliable interpretability founda-
tion for ML. Then, to capture PG topology, we regard nodes
of PG as point clouds and extract point cloud features, and
we introduce a novel graph structure, IRGraph. Furthermore,
a novel graph-based model IRGNN is designed, incorporating a
designed neighbor distance attention (NDA) layer for distance-
aware PG features aggregation and graph transformer (GT)
layer to capture global information. It should be noted that
our framework can analyze the IR drop of each node in PG,
which CNN-based methods cannot do. Experimental evaluations
demonstrate that our framework achieves significantly higher
accuracy than previous CNN-based approaches and numerical
solvers while substantially reducing computation time.

I. INTRODUCTION

IR drop occurs as current flows through the on-chip PG from
the power pad to each power-consuming cell [1] and affects
the quality of power supply [2]. Accurate IR drop analysis
is crucial to ensure worst-case IR drop values remain within
specified limits, thereby preventing adverse impacts on circuit
performance and stability. With the increase in chip integration
density, traditional analysis methods become computation-
intensive and consume substantial time and memory resources
when solving large-scale sparse linear equations [3]. Vari-
ous numerical methods [4]-[7] are designed to mitigate the
computational burden with nearly golden performance. These
numerical methods provide almost golden results and are
applied to contemporary electronic design automation (EDA)
tools. However, numerical methods remain time-consuming
and memory-intensive for early and large designs on an
industrial scale, limiting their benefits.

In recent years, convolutional neural network (CNN)-based
machine learning (ML) methods have been proposed as
promising alternatives for accelerating IR drop analysis. These
methods regard IR drop prediction as an image regression
process. IREDGe [8] presents a designed encoder-decoder
architecture with convolution layers for pixel-level prediction.
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MAVIREC [9] uses a 3D U-Net model for IR drop prediction
emphasizing dynamic IR drop problems and is also applicable
to static IR drop analysis. PGAU [10] incorporates attention
mechanisms to enhance IR drop prediction by focusing on
hotspot regions. MAUnet [11] integrates multi-scale convolu-
tional blocks, attention mechanisms, and U-Net architecture to
optimize IR drop prediction performance.

Although these methods achieve compelling performance,
their notable drawbacks cannot be neglected. Traditional nu-
merical methods [4]-[7] are able to achieve accurate and
detailed solutions, obtaining the IR drop at each node in the
PG. However, these methods are highly time-consuming. ML-
based methods [8]-[11], represented by CNNs, are fast but
lack sufficient granularity and can only provide pixel-level
predictions, which cannot accurately analyze the IR drop on
each node. This limitation makes it challenging to model PG
for fine-grained analysis and optimization accurately.

Additionally, due to the lack of transparency in ML and the
scarcity of real measured IR drop values at the nodes, ML-
based methods [8]-[11] struggle with issues related to model
interpretability and generalizability. As a result, these models
exhibit unstable performance when faced with different design
scenarios and fail to adapt to complex and dynamic design
environments. Thus, it is worth exploring whether numerical
methods can be combined with ML-based methods for a better
trade-off in speed, accuracy, interpretability, and scalability.
Numerical methods [4]-[7] solve large-scale linear systems
iteratively, where more iterations yield greater accuracy but
require longer runtime. By integrating ML, we can perform
fewer iterations for a rough solution and use ML to refine it.
This fusion enables a better understanding of complex physical
or geometric systems, offering more fine-grained and efficient
modeling for node-level IR drops.

To address the aforementioned issues, we propose a novel
graph-based framework, IRGNN, with the integration of nu-
merical solutions and point clouds to solve static IR drop
analysis. Currently, GNNs have been widely applied to capture
circuit topology and address challenges in EDA, demon-
strating good performance and generalizability [12]-[17]. For
higher generalization and granularity, we utilize graph-based
methods to achieve full-chip IR drop analysis. To increase
the interpretability and reliability of ML methods, we use
the AMG-PCG solver to obtain rough numerical solutions.
Furthermore, to better utilize the PG topology, we regard the
nodes as point cloud nodes and extract features to display
the relationships between nodes. To better capture the multi-
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dimensional PG topology, we model PG as a novel graph
structure, IRGraph, integrating numerical solutions and point
cloud features representing the PG topology comprehensively.
In order to leverage the information provided by IRGraph, we
propose a novel graph-based network, IRGNN, specializing
designed for static IR drop prediction, combining neighbor and
global information. The designed NDA layer aggregates infor-
mation of neighbor nodes and wires with specialized distance
weight, while GT layer focuses on the global information. The
main contributions are:

o We present IRGNN, a novel and comprehensive graph-
based framework tailored for node-level static IR drop
analysis. Incorporating numerical solutions and point
clouds, our framework achieves a unique balance between
computational accuracy and efficiency, making it highly
scalable for complex PG networks.

o We design IRGraph, an innovative graph representation
that integrates numerical solutions and point cloud fea-
tures. This structure effectively encodes the PG topology
while enriching information at each node.

« We introduce a specialized graph-based network, integrat-
ing the designed NDA layer with distance-aware weight
and the GT layer, to simultaneously capture local and
global features, thereby improving the performance.

IT. PRELIMINARIES

A. Power Grid and IR Drop Analysis

The design of PGs requires thorough evaluation and opti-
mization to ensure reliable performance while minimizing
resource consumption. Generally, PG is a complex system
with numerous nodes and interconnections, while the current
flow is the key to this system. Therefore, consideration of
PG topology is essential. As shown in Fig. 1, the intricate
structure of PG can be effectively captured by modeling it as
a graph, where nodes represent physical nodes (e.g., power
sources, sinks, and interconnect junctions), and edges denote
the electrical connections between them. This graph-based
abstraction allows for a detailed analysis of the PG topology,
facilitating the study of current distribution, voltage drops, and
potential bottlenecks in the network.

Parasitic effects in PGs lead to IR drops as current flows
from power pads to cells, potentially impairing chip perfor-
mance and even directly affecting its functionality. Conse-
quently, precise IR drop analysis is crucial for evaluating
power delivery performance. Traditional IR drop analysis
relies on solving linear equations governed by Kirchhoff’s
Current Law, formulated as GV = I, where G is the
conductance matrix of PG, I is the current vector, and V'
is the unknown voltage vector of nodes. With the number of
nodes in the PG increasing exponentially, it presents signif-
icant challenges to the efficiency of conventional techniques
and limits their applicability in large-scale problems, thereby
highlighting the need for ML approaches.

B. Graph Neural Network
Graph neural network (GNN) is specifically designed for tasks
on graph-structured data, like node classification and graph

Fig. 1 The illustration of topological structure of PG.

regression, by modeling graph structures and aggregating node
information via message-passing. Recently, considering the
topology of the circuit, many graph-based approaches have
emerged in the field of EDA. The framework in [12] leverages
graph attention network (GAT) to model node and edge infor-
mation in interconnect circuits jointly. GCN [13] effectively
predicts chip temperature distribution by modeling thermal
resistance networks under varying operating conditions. Deep-
Gate [14] and PolarGate [15] apply GNNSs to represent logic
gates and Boolean networks, enhancing circuit analysis and
design efficiency. EdgeGAT [16] and GNNTrans [17] improve
the accuracy and speed of timing estimation from graph-based
analysis using GNN. The adaptability of GNNs in modeling
relationships among diverse design objectives enhances rep-
resentation transferability, offering significant utility in EDA
through improved task generalization.

C. Point Cloud

In this work, we employ point cloud methodologies to com-
prehensively model the complex topology in PGs and to
improve the performance of full-chip IR drop prediction. Point
cloud is a data format that represents 3D shapes or structures
using a large number of spatial points, allowing for a better
representation of complex three-dimensional layouts. Point
cloud perception methods are divided into voxel-based and
point-based. Voxel-based method discretizes continuous three-
dimensional space into a finite number of voxels, making
data processing and analysis simpler and more intuitive [18].
However, this method often resulted in the loss of multi-
dimensional geometric details. In contrast, the point-based
approach processes raw point cloud data directly, preserving
its structural integrity and enabling end-to-end training with-
out transformation requirements. Zou et al. [19] treat circuit
layouts as point clouds, applying transformer-based techniques
to enhance feature extraction, yielding strong results in con-
gestion prediction and design rule verification.

D. Problem Formulation

This work aims to analyze the static IR drop at each node in
PGs and get better performance. We represent each node in
the PG as a vertex in a directed graph, facilitating the repre-
sentation and prediction of IR drop at every node, including
both cell-level and internal nodes. The edges of the graph
are modeled to reflect the topological connections between
nodes in the PG, whose direction corresponds to the direction
of the current in the interconnecting wires. Therefore, the
PG is treated as a directed graph, denoted as G = (V, E),
where V' = {vy,...,v,} represents the set of n vertices
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Fig. 2 Tllustration of IRGNN framework for static IR drop prediction.

corresponding to both internal nodes and cells in the PG, and
E C V xV represents the set of directed edges corresponding
to the current-carrying wires. Our object is to design an
algorithm F™* to intake the PG-based graph G to give the
closest node-level IR drop prediction F', formulated as:

F* = arg m}n Loss (F (G = (V,E)),y). (1

ITII. IRGNN FRAMEWORK

A. Overall Flow

We focus on developing our graph-based framework, IRGNN,
specializing in node-level static IR drop prediction, as shown
in Fig. 2. The numerical solution provides a strong basis
for understanding complex PG systems, while its integration
with efficiency-promising GNN contributes to the development
of more accurate and efficient analysis. In our framework,
an efficient AMG-PCG solver is applied to obtain rough
numerical solutions quickly and reliably. Besides, to better
capture the extremely high geometric position characteristics
of PG nodes, we model PG nodes as point cloud nodes
with 3D coordinates and features. Then, we extract point
cloud features to represent the relative positional relationships
and current flow directions between nodes. Subsequently, to
better utilize the topological information of PG, we propose
a novel graph structure, IRGraph, with feature extraction
that comprehensively represents the fine-grained PG structure.
Finally, we introduce a new network, IRGNN, incorporating
an NDA layer that aggregates information from nodes and
edges using a distance attention mechanism, and a GT layer
to capture both local neighbor and global information. More
details of several key designs of our framework are elaborated
in the following sub-sections.

B. Numerical Solution using AMG-PCG
To address the system matrix presented in Section II-A, our
goal is to provide as accurate an initial solution as possible in
a shorter runtime, laying the foundation for understanding the
PG system and subsequent ML phase. The numerical solution,
when utilized as a feature, enhances the interpretability of
the model and increases the reliability of ML methods, which
are often considered black-box approaches. In the numerical
solution phase, the PG spice file is loaded with preprocessing
involving a SPICE parser and a circuit generator. To achieve
rapid and reliable numerical solutions, the algebraic multigrid
preconditioned conjugate gradient (AMG-PCG) method pro-
posed in PowerRush [6] is applied.

In AMG-PCG, the conjugate gradient (CG) method is en-
hanced by using an algebraic multigrid (AMG) preconditioner

to improve convergence efficiency. The process begins with the
standard CG iteration on the system GV = I, where AMG
acts as a preconditioner to minimize the high-frequency error
components, thus accelerating the solution process. Specif-
ically, AMG constructs a hierarchy of coarser grids with
restriction R() and prolongation P() operators for each level
1. The preconditioned system becomes M ~1GV = M ~1b,
where M ~1 represents the AMG preconditioner applied to G.
By iterating through CG with AMG, the method progressively
updates V' while minimizing the residual » = I — GV until
convergence, getting an accurate final solution efficiently.
Typically, numerical methods require a significant number
of iterations to achieve an accurate solution. In our approach,
we adopt a reduced iteration strategy to quickly obtain an
approximate solution, which serves as a foundational feature
for nodes in Graph-based models, as detailed in Section III-D.
Despite this solution is not sufficiently accurate, it effectively
provides rough IR drop values at each node, thereby greatly
benefiting ML in understanding and learning PG systems.

C. Point Cloud Feature

The topology of the PG is just as crucial as the widely
recognized and used circuit features, as it governs the path
for power transmission directly. However, effectively utilizing
the PG topology requires solving challenges related to the
relative position of nodes in the PG metal layer and the relative
position between nodes. At present, point cloud has proven to
be highly effective for 3D object detection. Thus, we treat
PG nodes as point cloud nodes, with each node having two
attributes: 3D coordinates and features. The 3D coordinates of
the nodes in the PG are determined based on the position of the
metal layers and the metal rails to which the nodes belong.
Specifically, the vertical position z of each node is derived
from its corresponding metal layer, while the plane coordinates
(z,y) are based on the node’s location within the respective
metal rail. Since the vertical distance between layers is not
proportional to the overall size of PG, we standardize z by
normalizing it to the average distance between the rails in the
bottom-most layer of the PG. This normalization ensures that
the plane coordinates (xz,y) remain consistent with the original
distribution in the PG, preserving the spatial relationships in
the plane while adjusting for the vertical scaling.

Both the wire connections between nodes and the current
flow in PG can indirectly affect the IR drop loss, which is
critical for IR drop analysis. PointNet++ [20] calculates the
distance and positional characteristics between each point and
the central point used for feature extraction and weighting
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Fig. 3 IRGraph construction with distance-aware edge.
during convolution operations. Inspired by PointNet++ [20],
we introduce an offset vector to describe the positional re-
lationship between nodes and the direction of current flows
depending on the nodes’ net. For example, the offset between
node v; = (x1,y1,21) on the GND net and vo = (22, Y2, 22)
on the VDD net can be formulated as of fset = (a2 —
Z1,Y2 — Y1,22 — 21). With the offset vector, it is possible
to describe both the relative positions between nodes in PG
and the directivity of the current flow.

D. IRGraph Construction
Existing methods predominantly rely on 2D feature maps
derived from current patterns, such as total power or fre-
quency, for IR drop prediction. However, these approaches
are limited in that they typically focus on single-layer, grid-
based representations, which fail to capture the node-level
details of the PG. Moreover, these 2D maps are unable to
represent the complex, multidimensional interactions between
cells and wires, such as the flow of current and the physical
topology of the PG. To overcome these limitations, we model
the PG as a graph and propose a novel graph structure,
IRGraph, incorporating both the PG topology and current flow
information. We enhance the representation of the PG charac-
teristics by extracting additional PG-based features, combining
the numerical solution and point cloud data. The IRGraph is
constructed depending on the original cell-PG connection and
especially virtual edges for local consistency. IRGraph can not
only represent the IR drop of the lowest cell granularity but
also predict the IR drop of the nodes inside PG, which is
impossible to achieve with the previous CNN-based method.

1) Graph Construction

An unweighted directed graph G = (V, E) is constructed
to model the practical non-Euclidean topology of the PG
network, as shown in Fig. 3. Here, V represents all nodes
within the PG network, encompassing both circuit cells and
internal nodes. The formation of edges is performed in two
stages. First, the original PG connections are treated as edges
in the IRGraph to capture voltage propagation through actual
current flows. Then, a distance-aware edge construction is
applied, incorporating edges based on spatial proximity (Eu-
clidean distance ||v;, vj]|, < 0 for nodes v;, v;). These virtual
edges facilitate information propagation within the GNN. The
extracted features from this process are assigned as features
for both V’s and E’s, detailed in the next part.

2) Feature Extraction

To enhance the accuracy and convergence, we extract more
node-level features to improve the representation of nodes.

o The current for each node is calculated by the current

source and Kirchhoff’s current law and voltage law
together with the resistance of the wire.

o The effective distance, defined as the reciprocal of the
sum of the Euclidean distances to all voltage sources,
quantifies the node’s proximity to these sources.

o The shortest path resistance computes the total resis-
tance using the shortest path from node to power sources.

o The net value indicates that the node belongs to the VDD
or GND network, represented by the binary value O or 1.

o The numerical solution detailed in Section III-B.

o The point cloud position is the 3D coordinate of nodes.

Metal wires in PG also play a crucial role in power delivery
since they carry the current flow. To represent the effect of
wires in the topologies of PG and current flow, we extract
two wire-based features for each edge in IRGraph:

« The wire resisitance, extracted from spice file.
o The wire offset, calculated as Section III-C.

E. IRGNN Model

In our work, we design a novel graph neural network, IRGNN,
specializing in static IR drop prediction, which is a node
regression task. The IRGraph is utilized as the input of
IRGNN, containing features both on nodes and edges. In
IRGNN, to take advantage of both node and edge features,
we design an NDA layer, as the node attention aggregator in
NDA processes the neighbor node and edge representations
simultaneously with attention weight. According to the prin-
ciple of local consistency, we incorporate the attention weight
in this layer based on the neighbor distance between nodes.
Then, the global representation of PG is captured by the GT
layer, allowing the contact of each node. Finally, the IRGNN
representation is exported through an MLP readout.

1) Neighbor Distance Attention Layer

Traditional GAT is designed primarily for node classifica-
tion tasks and has achieved significant success. We design the
NDA layer, displayed in Fig. 4, to adapt it to IR drop predic-
tion. This layer accepts the transformed node and edge repre-
sentations generated through the linear transformer as inputs,
{vl,Vie N,} and {el;,¥(i,j) € N}, and produces atten-
tion based aggregated node representations {fo,Vi € NU},
where [ is number of layers of network.

To utilize features from nodes and edges, we execute a
convolution operation to aggregate information from a node’s
neighboring nodes and connected edge data in the update
process of the node. In this way, the information provided
by the topology of the PG system and current load patterns is
unified, enabling a cohesive representation that leverages both
spatial and geometric insights. The node attention coefficient
h! ; indicates the importance of neighborhood information to
the target node and is computed as:

l N sl (1.l
h;; = (a') ['Ui”eij”/vj] d;j, )
where ¢ denotes the target node, and j is its neighboring node
within the neighborhood set N;. The attention mechanism,

represented by the shared vector a, allows for consistent
attention across all nodes. To capture edge directionality, we
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E

introduce d;;, where a value of 1 indicates the direction from
node ¢ to 7, and —1 indicates the opposite direction.

The cell connection edges cause complex interactive rela-
tionships owning to discriminative node distances. To adap-
tively rescale and aggregate more significant information from
complex edge connections of different-distance regions, the
distance attention weight is designed as:

v B
d'LS” — <||vmf:)]2) , (3)

where h denotes the distance threshold, and S controls the
decay rate. ||v;, v;l|, is their Euclidean distance.

To make coefficients easily comparable across different
nodes, all node attention coefficients of node ¢ are normalized
using the softmax function with distance attention weight, like:

l

exp (LeakyReLU (hi]))

YT v, oD (LeakyReLU (h!
ken, OXP (Leakyhe (hix))
With the activate function o, the node representation is up-
dated with neighbor distance and other features’ aggregation:

d’l:Sl'j . (4)

vt =o Z alvl ], VieN,. 5)
JEN;
2) Graph Transformer Layer

Different from the CNN-based method, which focuses on
exploring the local information of IR drop, the GNN-based
method uses the way of message passing, which leads to too
much local information and ignores the global information
easily. In IRGNN, we leverage the GT layer [21] to capture
global information across the graph structure, which is essen-
tial for improving the performance in IR drop prediction. The
GT layer allows each node to attend to all other nodes in
the graph, enabling global interactions without the limitation
of local neighborhoods. Through a self-attention mechanism,
each node’s representation is updated by aggregating features
from all nodes, weighted by learned relevance scores, which
embeds global context into individual node features. This
global attention mechanism effectively captures complex de-
pendencies between distant nodes, leading to a more holistic
node representation. Additionally, the GT layer incorporates
position encodings to enhance focus on critical regions, in-

jecting more structural information into the model.

IV. EVALUATION
A. Experimental Settings
Baselines. IRGNN is evaluated against competitive ML-
based IR drop prediction models, including IREDGe [8] and

MAUnet [11]. Furthermore, it is also compared to the winner
of the ICCAD 2023 contest [22].

Datasets. The ICCAD2023 [22] dataset focuses on static IR
drop prediction, featuring 20 real designs and 100 synthetic
designs generated based on [23], closely resembling realistic
PGs. To increase dataset diversity and assess model generaliza-
tion, three open-source benchmarks [23] are utilized: Nangate,
ASAP, and Skywater, comprising 1000, 1000, and 418 designs,
respectively. Experiments with baselines are conducted on
ICCAD2023 and Nangate to validate the framework’s effec-
tiveness. The trainset and testset are evenly divided according
to the number of nodes in PGs, to verify model’s generality
and improve rationality of experiments. Additionally, large-
scale datasets are employed to assess performance scalability.
Three benchmarks are used during pretraining, and fine-tuning
is performed on fake and real designs from the ICCAD2023.

Metrics. Following the contest [22], the mean absolute error
(MAE), F1 score, Pearson correlation coefficient (CC), and
runtime are selected as the evaluation metrics. The MAE
is the average absolute difference between a prediction and
the ground truth. The CC measures the linear correlation
between predicted values and ground truth values. The F1
score is a binary classification metric utilized to assess the
prediction performance of hotspot regions. Given that design-
ers are particularly concerned with the worst-case IR drop,
minimizing modeling maximum error is of utmost importance.
The Maximum IR Drop Error (MIRDE) metric is introduced.

B. Main Results

To compare with the ML-based baselines, our experiments
first compare the result on the bottom layer, which mainly
includes the nodes of the working cells and is most concerned.
Considering former CNN-based methods can only predict
roughly at the pixel level, our graph-based method can analyze
the IR drop of each node in PG. Therefore, the golden result
is obtained for all nodes, and we make a comparison with
a famous numerical simulator PowerRush [6], including the
analysis error and efficiency of all nodes in PGs.

Comparison with ML-based Method. Like the method of
dealing with small trainsets problem by pretraining with public
training sets which have higher uncertainty, IRGNN is trained
first with fake designs, which may not be clean in some
maps to get general representations of IR drop. Then, half
of the real designs are used to fine-tune. TABLE I shows
the IR drop analysis results of different methods. Considering
the newly proposed competitive MAUnet [11], our approach
achieves better performance on each dataset with no significant
time cost increase. IRGNN still outperforms all baselines in
MIRDE, representing more accuracy in the worst-case region.
Our model is trained from the foundation of numerical solu-
tions, and the topology information utilized by NDA increases
the interpretability and robustness of the model.

Considering the performance potential of large-scale
datasets, another experiment is conducted. In the pretraining
phase, three open-source benchmarks aforementioned are uti-
lized, while the fake designs and real designs in the same
setting of the last ICCAD2023 experiment are fine-tuned rela-
tively step by step. The results are summarized in TABLE II.
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TABLE I Comparison with ML-based Methods. The Unit of MAE and MIRDE is x10~4V.

Methods ‘

ICCAD2023 dataset ‘

Nangate dataset

| MAE| F1t CCt MIRDE| | MAE| FIt CCt MIRDE|
IREDGe [8] 354 048 086 6.42 083 0.67 0.89 2.26
MAUnet [11] 112 060 0.95 4.35 043 077 0.99 1.17
Contest Winner [22] | 1.15 0.58 0.94 437 062 075 0.96 1.15
IRGNN (Ours) | 083 072 097 289 | 026 080 0.99 0.96

TABLE II Results of Large-scale Dataset.

Methods | MAE| FI1t CCt MIRDE]
IREDGe [8] 2.79 0.53 0.89 5.58
MAUnet [11] 075 071 097 3.05

Contest Winner [22] 0.89 0.67 0.97 3.44
IRGNN (Ours) \ 046 0.77 0.98 2.37

TABLE III Results of Evaluation on every Node in PG.

Methods | MAE, FIt CCt MIRDE| Runtime|
PowerRush [6] | 0.71 058 0.94 2.89 30.52
IRGNN (Ours) | 0.56  0.75 0.96 2.83 6.64

IRGNN achieves better performance with the improvement of
38.67% on MAE, 8.45% on F1, 1.03% on CC, and 22.29%
on MIRDE with no significant time cost increase.

Comparison with Numerical Method. The CNN-based
method has the limitation of using pixel as coarse-grained
prediction. However, IRGNN breaks this limitation with every
node’s prediction. To evaluate the IRGNN’s ability on node-
level prediction, the comparison with PowerRush [6] is con-
ducted and results are shown in TABLE III. Notably, IRGNN
surpasses PowerRush in all metrics, with significantly less time
cost, indicating great performance on nodes of both the bottom
layer and inner layers. From the visual comparison in Fig. 5,
it is clear that IRGNN can achieve better MAE at a speed
that cannot be matched by PowerRush. Thanks to the fusion
of numerical and GNN methods, IRGNN achieves a better
trade-off between accuracy and efficiency.

C. Transfer Learning

The transferability is of great significance in IR drop analysis
since the amount of dataset is limited and the style of design
is diverse. In order to evaluate the transferability and general-
izability of our proposed method model, the experiment uses
the Nangate as a training set and regards the real designs from
ICCAD2023 as test samples. From the results in TABLE 1V,
our method is much better in generalization ability with better
prediction on the corresponding IR drop in the face of very
different and never-seen PGs. The numerical solution provides
a reliable foundation of IR drop distribution and the ability to
deal with topological neighbor information of NDA increases
the interpretability of the model’s decisions, allowing it to
perform robustly under varying conditions.

D. Ablation Study

Ablation experiments are conducted to evaluate the impact of
various techniques in our IRGNN. Fig. 6 shows the improved
results with a certain technique. The results demonstrate that
the numerical solution (Num. Solu.) significantly reduces

TABLE IV Transfer Results on ICCAD2023 Dataset.

Method | MAE| F1t CCt MIRDE]
IREDGe (8] 488 039 0.71 8.01
MAUnet [11] 207 055 0.84 4.78

Contest Winner [22] 1.95 0.55 0.83 4.92
IRGNN (ours) ‘ 1.68 0.62 0.88 3.61
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MAE and MIRDE, likely due to its precise initial point for
learning. Additionally, our point cloud features also improve
performance with better F1. Both the NDA and GT layers also
contribute to performance gains, especially in the CC and F1.

V. CONCLUSION

We propose a novel graph-based framework, IRGNN, com-
bining the numerical solution with ML and utilizing the
topological information of PG. IRGNN exploits the advantages
of both numerical solution and ML methods, and can strike a
good trade-off between efficiency and accuracy. Experiments
demonstrate that our framework can achieve the best perfor-
mance compared to newly proposed methods.
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