
Snow Ablation Optimizer Accelerator Based on
High Level Synthesis

Maoshuo He∗1, Renjing Hou∗2, Zirui Li 2, Kang Zhao †2,
1Xidian University 2Beijing University of Posts and Telecommunications

maoshuohe@stu.xidian.edu.cn, {hourj, lzr_official, zhaokang}@bupt.edu.cn

Abstract—How to reduce the execution time in the snow
ablation optimizer (SAO) is a key problem. However, it is
very hard because the space for achieving time optimization
through code modification is limited. To resolve this issue, this
paper utilizes the Vitis HLS tool to deploy the SAO onto the
FPGA and optimize the SAO’s execution time. Vitis HLS is a
key tool in high-level synthesis (HLS). Until now, there have
been few attempts to optimize the execution time of this type
of algorithm through HLS. This paper proposes a pragma
integration model combined with a modified linear feedback
shift register (LFSR) algorithm to reduce execution time. The
experimental results show that this approach reduces the latency
to 44.50% while maintaining an acceptable convergence error,
compared to previous optimizations.

Index Terms—High-Level Synthesis, Snow Ablation Opti-
mizer, FPGA, Accelerators, Linear Feedback Shift Register

I. INTRODUCTION

In the field of very large-scale integration (VLSI), high-
level synthesis (HLS) [1] has emerged as a crucial technology
and is now extensively adopted by VLSI design companies.
When contrasted with the traditional register transfer level
(RTL) design approach, HLS exhibits remarkable technical
advantages in VLSI development. Its core value lies in the
elevation of the design abstraction level: by leveraging high-
level languages such as C/C++/SystemC to depict algorithmic
behavior, HLS redirects the design emphasis from the mi-
crocontrol of sequence and circuit structure to the efficient
implementation of functional logic. This can significantly
abbreviate the development cycle and reduce the threshold
for hardware development.

At the optimization stage, the HLS tool deploys strategies
including pipeline, loop unroll, and array partition to generate
a pareto-optimal architecture with respect to throughput,
latency, and hardware resource consumption. For example,
as illustrated in Fig. 1, in this case, the HLS tool initiates
the next operation before the current one is fully completed.
Suppose the major cycle consists of three cycles and the
initiation interval is set to 1. Once one cycle is finished, the
next major cycle commences. This approach can effectively
reduce latency. Through synthesis directives, other structures
like arrays can also be manipulated. Arrays can be synthesized
into register-based random access memory (RAM) or fully

∗Co-first authors with equal contribution.
†Corresponding author.
This work is supported in part by National Key R&D Program of China

(2022YFB2901100) and Beijing Natural Science Foundation under Grant
4244107.

Fig. 1 The pragma of pipeline on hardware circuit generated
by HLS

expanded into independent trigger circuits. Now there are
numerous cases [2], [3] have demonstrated that algorithms
implemented on FPGAs can be efficiently accelerated using
Vitis HLS.

The snow ablation optimizer (SAO) [4] is a newly pro-
posed innovative meta−heuristic algorithm. In comparison
with other heuristic algorithms, it demonstrates a superior
ability to balance the exploration and exploitation processes.
This enables it to effectively avoid premature convergence
and achieve more favorable outcomes. Moreover, it exhibits
remarkable global search capabilities and strong general ap-
plicability. Nevertheless, the SAO has a relatively high time
complexity because it uses dual−population mechanism and
the dependence on random number generation for conver-
gence. When addressing high−dimensional or large−scale
optimization problems, it consumes the longer processing
time for handling such problems because it has the substantial
number of iterations and the extended convergence time.
Consequently, the reduction of the SAO’s execution time has
emerged as an urgent issue.

In this work, we have proposed an effective optimization
method to achieve better performance. The main contributions
of this paper include:



• A pragma integration model designed based on the
latency of the objective function.

• A random number generation model based on HLS for
LFSR combined with the pragma integration model

• Based on the optimization of the previous two points,
the experiment shows that the latency has decreased by
44.50%.

The rest of the paper is organized as follows: Section II
introduces the preliminary knowledge. Section III presents
the proposed methodology. Section IV gives the experimental
results. Section V concludes the paper.

II. PRELIMINARIES

A. Vitis HLS

To shorten the execution time of SAO, we contemplated
implementing SAO on an FPGA. In contrast to the conven-
tional RTL design approach, HLS enables rapid algorithm
deployment. Consequently, we decide to utilize HLS for
this deployment. There are numerous HLS tools available.
ROCCC HLS tool can transform C programs into hardware
accelerators. GAUT can convert C programs into a pipeline
structure that satisfies specific constraints. LegUp HLS can
take C programs as input and automatically convert them
into a hybrid system. Vitis HLS is capable of automatically
converting C/C++/OpenCL code into an optimized RTL im-
plementation. Through the comprehensive comparative anal-
ysis, we determined that Vitis HLS provides a more extensive
library set in comparison to other HLS tools. Its framework
integrates C simulation, C/RTL co-simulation, and waveform
analysis within a unified IDE, enabling accelerated hardware
implementation.

Vitis HLS, an advanced HLS tool developed by Xilinx, su-
persedes Vivado HLS and features enhanced IDE integrations.
Its architecture comprises a front-end and a back-end. The
open-source front-end, available on GitHub, supports custom
optimization plugins and deep integration with the Vitis AI
and Vitis vision libraries. The back-end implements FPGA
device-specific resource and timing path optimizations. The
operation process of the Vitis HLS tool is shown in Fig. 2.

B. Snow Ablation Optimizer

The Snow Ablation Optimizer (SAO) is a novel meta-
heuristic algorithm inspired by snow melting phenomena. It
simulates two physical processes: snow formation and melt-
ing, as shown in Fig. 3. During the exploration phase, SAO
employs Brownian motion to model the stochastic diffusion
of water vapor. During exploitation, it utilizes the degree-
day method [5] to update individual positions relative to the
swarm centroid. It incorporates a dual-population mechanism
to maintain a dynamic equilibrium between global exploration
and local exploitation throughout the optimization process.

The position update equation of the entire SAO algorithm
is shown as Equation (1):

Zi(t+ 1) =


Elite(t) +BMi(t)⊗

[
θ1(G− Zi)

+ (1− θ1)(Z̄ − Zi)
]
, i ∈ indexa

M ×G(t) +BMi(t)⊗
[
θ2(G− Zi)

+ (1− θ2)(Z̄ − Zi)
]
, i ∈ indexb

(1)

where indexa and indexb denote a set of indexes that include
the line numbers of individuals in Pa and Pb throughout the
position matrix.θ1 and θ2 denote a number randomly pro-
duced in [0, 1]. Elite(t) denotes the elite pool. Zi(t) denotes
the ith individual during the tth iteration. Z(t) denotes the
centroid position of the whole swarm.

Although SAO exhibits exceptional global search capa-
bilities and strong universality, it has high time complexity,
as shown in Equation (2). It leads to scalability challenges.
When applied to high-dimensional or large-scale optimiza-
tion problems, the algorithm requires extensive iterations
and prolonged convergence time. Consequently, the efficient
hardware acceleration of SAO becomes imperative.

O (N ∗Dim+N ∗ tmax ∗ (logN +Dim+ 1)) (2)

where N denotes the number of search agents. Dim denotes
the dimension.

C. Linear Feedback Shift Register

The convergence of SAO depends on random number gen-
eration. Compared to alternatives like the linear congruential
generator [6], mersenne twister [7], and wichmann-hill [8]
algorithms, the linear feedback shift register (LFSR) offers a
key FPGA implementation advantage. It requires only shift
registers and XOR gates. This eliminates the necessity for
complex arithmetic units such as multipliers and dividers,
thereby significantly reducing resource consumption. There-
fore, we employ LFSR as the random number generation
algorithm for the implementation of SAO.

The linear feedback shift register (LFSR) generates pseu-
dorandom numbers. It generates random numbers from initial
seeds via linear feedback and tap-selected XOR operations.
At the same time, it will create a new seed for future use.
This feedback can shifts the register states, as formalized in
Equation (3). This architecture enhances the algorithm’s per-
formance longevity while maintaining superior optimization
efficiency on FPGAs.

sn = s1 ⊕ s2 ⊕ ...⊕ sm (3)

where s denotes the data of each bit. ⊕ denotes the XOR
operation.

III. METHODOLOGY

A. Pragma Integration Model

The SAO implementation on FPGA achieves accelerated
execution and enhanced resource efficiency via pragma-
directed HLS optimizations. However, algorithm-specific



Fig. 2 The process of Vitis HLS

Fig. 3 Three-state change diagram

characteristics dominate pragma optimization outcomes. Sys-
tematic exploration of pragma interdependencies is therefore
critical for optimizing SAO hardware performance.

In Vitis HLS, diverse pragmas optimize algorithm imple-
mentations. Directly applying dataflow pragmas to the main
function of SAO is infeasible, because SAO has the prevalent
imperfect loop nesting and its subsequent loop iterations
depend on prior computations. Although temporary arrays
can decouple dependencies, they incur prohibitive resource
overhead. To resolve this, we propose a hierarchical pragma
integration model that can significantly reduce latency in
SAO.

Taking init loop as an example, the init loop needs to
call the objective function during its operation. Each ob-
jective function has the different running cycles. For high-
dimensional or large-scale optimization problems, this vari-
ability leads to significant latency overhead. The entire pro-
cess of the init loop algorithm is summarized in Algorithm
1.

Algorithm 1 init loop process

Require: function,current best score,current best pos
1: for i = 0 → N − 1 do
2: obj val = objective function(X[i])
3: objective function[i] = obj val
4: if obj val < current best score then
5: current best score = obj val
6: for j = 0 → dim do
7: current best pos[i]=X[i][j]
8: end for
9: end if

10: end for

Based on the above pseudo-code, we significantly acceler-
ate the overall running speed through the micro-combination
of pipeline and unroll. Taking the three-dimensional sphere
function as the objective function as an example, analysis
shows that the clock cycle for calling the objective function
once is shown in Equation (4)

Ly = Lm + log2(dim) · La (4)

where Ly represents the total cycles, Lm represents the cycle
of each level of multiplication, La represents the cycle of
each level of addition, dim represents the dimension of the
function.

In this example, we use the pragma directive inline to
specify inlining of the target function and use the pragma
directive unroll to expand the entire for loop. We obtained the
total latency for one cycle is 3. In the SAO algorithm, multiple
data need to be read simultaneously. Since each block of
RAM has only two data ports at most, the loading operation
cannot be completed within a single cycle. We propose a
model that can minimize the initiation interval of the pipeline
in SAO. This model can significantly reduce the latency.
Taking the three-dimensional sphere function as an example,
in the init loop, we set the initiation interval of pipeline to
3, which is the total latency number. The unroll factor should
be divisible by the number of search agents. We control
throughput at 1.6 data per cycle. In thie case, this approach
partitions combinational logic depth to prevent single-cycle
path timing violations and reduce critical path delay. It can
also avoid the explosion of fully expanded resources, resulting
in a significant decrease in latency.

B. LFSR Based on HLS

The SAO algorithm mainly reduces the solution space
through random generation. It generates random numbers
to search for the approximate path and conducts detailed
search through population segmentation. The entire process
can consume a large amount of latency during the generation
of random numbers. Therefore, the processing of random
number generation is crucial for reducing latency.

The initial implementation of the LFSR algorithm generates
integers ranging from 0 to 216 through a linear feedback
shift register and then divides by 216 to obtain decimal
numbers between 0 and 1. However, this method consumes
a large amount of multipliers during repeated calls. It will
significantly reduce the operational efficiency.

To further reduce latency, we optimize the LFSR algorithm.
The optimization is summarized in Fig. 4. To reduce the
risk of overflow and truncation, we generate a 16-bit fixed-
point number as the required random number. We initially
generate a 32-bit binary number using LFSR, where the first
16 bits represent the integer part and the last 16 bits represent
the fractional part. Setting the upper 16 bits to zero, we
obtain a random number in the range [0,1]. Based on the



Fig. 4 The process of LFSR

analysis, the operation of generating random numbers can
be completed in just 3 clock cycles. To adapt LFSR for
HLS, we employ inline directives to enable function inlining.
Through the analysis of the LFSR function implementation,
we have developed a random number generation algorithm
that can be executed within a single cycle in Vitis HLS. This
algorithm exclusively employs operations such as shifting and
concatenation. These operations are inherently free from ad-
ditional latency. It does not involve multiplication or division
operations that are unsuitable for FPGA implementation. By
integrating this algorithm with the pragma integration model,
we have achieved a significant reduction in latency.

IV. EVALUATION

A. Experimental Environment

We implemented the FPGA deployment of the SAO al-
gorithm based on Vitis HLS, and achieved another FPGA
acceleration by modifying its code and fine-tuning pragmas.
All test cases are written in C/C++. All experiments were
conducted on an Ubuntu 20.04.6 LTS system, with the CPU
being an Intel (R) Core (TM) i5-12500H @ 3.1GHz.

B. Experimental Setting

We use the Ackley function [9] as a test case. The Ackley
function is a multi-modal test function often used to evaluate
the performance of optimization algorithms. It has one global
minimum point and multiple local minimum points, which is
shown in Equation (5)

f(x) = −a · e−b
√

1
n

∑n
i=1 x2

i − e
1
n

∑n
i=1 cos(c·xi) + a+ e (5)

where a,b.c denotes the constant, n denotes dimension, xi

denotes input parameter.
Because the global minimum point of the arkley function is

at the origin (0, 0, 0), we use the distance from the optimal
convergence point to the origin as the evaluation criterion,
which is shown in Equation (6)

score = x2 + y2 + z2 (6)

where x, y, z denotes the coordinate of the outcome.

C. Experimental Result

We set the dimension of the SAO algorithm to 3, the
number of search agents to 50, and the maximum number of
iterations to 2000. To minimize data precision loss, all data are
represented as 32-bit fixed-point numbers. The convergence
results obtained before and after optimization are shown in
Fig. 5. The final result is shown in TABLE I.

Fig. 5 The result of the snow ablation optimizer

TABLE I result of accelerator
Result Best Score Latency(s) Improvement (%)

before optimization 0.57 0.1827 —
after optimization 0.65 0.1014 44.5%(Latency ↓)

According to TABLE I, the error of its best score is
14.04%, which is within the acceptable range. Compared with
previous optimizations, the optimization method can reduce
latency by 44. 50%.

V. CONCLUSION

In this work, we propose an implementation and optimiza-
tion of the SAO algorithm based on HLS, which will be
beneficial for the future optimization of algorithms involving
random number generation using the Vitis HLS tool. By
proposing the pragma integration model and optimizing the
LFSR function, we achieve a reduction in its latency.

REFERENCES

[1] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design & Test of Computers, vol. 26,
no. 4, pp. 8–17, 2009.

[2] M. A. Elhewehy, K. O. Abbass, and O. A. Nasr, “Hardware-software co-
design implementation of fixed-point googlenet on soc using xilinx vitis,”
in 5th Novel Intelligent and Leading Emerging Sciences Conference
(NILES), 2023, pp. 274–278.

[3] M. Zou, L. Ma, and J. Li, “Implementation and optimization of
polyphase channelization using vitis hls,” in IEEE 12th International
Conference on Information, Communication and Networks (ICICN),
2024, pp. 42–46.

[4] L. Deng and S. Liu, “Snow ablation optimizer: A novel metaheuristic
technique for numerical optimization and engineering design,” Journal
of Expert Systems with Applications, vol. 225, p. 120069, 2023.

[5] G. Zhou, M. Cui, J. Wan, and S. Zhang, “A review on snowmelt models:
progress and prospect,” Sustainability, vol. 13, no. 20, p. 11485, 2021.

[6] I. Borosh and H. Niederreiter, “Optimal multipliers for pseudo-random
number generation by the linear congruential method,” BIT Numerical
Mathematics, vol. 23, no. 1, pp. 65–74, 1983.

[7] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[8] B. McCullough, “Microsoft excel’s ‘not the wichmann–hill’random
number generators,” Computational Statistics & Data Analysis, vol. 52,
no. 10, pp. 4587–4593, 2008.

[9] D. Ackley, A connectionist machine for genetic hillclimbing. Springer
science & business media, 2012, vol. 28.


